{"title":"通过系统光曲线建模揭示 IIn 型超新星的多样性","authors":"C. L. Ransome, V. A. Villar","doi":"arxiv-2409.10596","DOIUrl":null,"url":null,"abstract":"Type IIn supernovae (SNeIIn) are a highly heterogeneous subclass of\ncore-collapse supernovae, spectroscopically characterized by signatures of\ninteraction with a dense circumstellar medium (CSM). Here we systematically\nmodel the light curves of 142 archival SNeIIn using MOSFiT (the Modular Open\nSource Fitter for Transients). We find that the observed and inferred\nproperties of SNIIn are diverse, but there are some trends. The typical SN CSM\nis dense ($\\sim$10$^{-12}$gcm$^{-3}$) with highly diverse CSM geometry, with a\nmedian CSM mass of $\\sim$1M$_\\odot$. The ejecta are typically massive\n($\\gtrsim10$M$_\\odot$), suggesting massive progenitor systems. We find positive\ncorrelations between the CSM mass and the rise and fall times of SNeIIn.\nFurthermore there are positive correlations between the rise time and fall\ntimes and the $r$-band luminosity. We estimate the mass-loss rates of our\nsample (where spectroscopy is available) and find a high median mass-loss rate\nof $\\sim$10$^{-2}$M$_\\odot$yr$^{-1}$, with a range between\n10$^{-4}$--1M$_\\odot$yr$^{-1}$. These mass-loss rates are most similar to the\nmass loss from great eruptions of luminous blue variables, consistent with the\ndirect progenitor detections in the literature. We also discuss the role that\nbinary interactions may play, concluding that at least some of our SNeIIn may\nbe from massive binary systems. Finally, we estimate a detection rate of\n1.6$\\times$10$^5$yr$^{-1}$ in the upcoming Legacy Survey of Space and Time at\nthe Vera C. Rubin Observatory.","PeriodicalId":501068,"journal":{"name":"arXiv - PHYS - Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Diversity of Type IIn Supernovae via Systematic Light Curve Modeling\",\"authors\":\"C. L. Ransome, V. A. Villar\",\"doi\":\"arxiv-2409.10596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type IIn supernovae (SNeIIn) are a highly heterogeneous subclass of\\ncore-collapse supernovae, spectroscopically characterized by signatures of\\ninteraction with a dense circumstellar medium (CSM). Here we systematically\\nmodel the light curves of 142 archival SNeIIn using MOSFiT (the Modular Open\\nSource Fitter for Transients). We find that the observed and inferred\\nproperties of SNIIn are diverse, but there are some trends. The typical SN CSM\\nis dense ($\\\\sim$10$^{-12}$gcm$^{-3}$) with highly diverse CSM geometry, with a\\nmedian CSM mass of $\\\\sim$1M$_\\\\odot$. The ejecta are typically massive\\n($\\\\gtrsim10$M$_\\\\odot$), suggesting massive progenitor systems. We find positive\\ncorrelations between the CSM mass and the rise and fall times of SNeIIn.\\nFurthermore there are positive correlations between the rise time and fall\\ntimes and the $r$-band luminosity. We estimate the mass-loss rates of our\\nsample (where spectroscopy is available) and find a high median mass-loss rate\\nof $\\\\sim$10$^{-2}$M$_\\\\odot$yr$^{-1}$, with a range between\\n10$^{-4}$--1M$_\\\\odot$yr$^{-1}$. These mass-loss rates are most similar to the\\nmass loss from great eruptions of luminous blue variables, consistent with the\\ndirect progenitor detections in the literature. We also discuss the role that\\nbinary interactions may play, concluding that at least some of our SNeIIn may\\nbe from massive binary systems. Finally, we estimate a detection rate of\\n1.6$\\\\times$10$^5$yr$^{-1}$ in the upcoming Legacy Survey of Space and Time at\\nthe Vera C. Rubin Observatory.\",\"PeriodicalId\":501068,\"journal\":{\"name\":\"arXiv - PHYS - Solar and Stellar Astrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Solar and Stellar Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
II型超新星(SNeIIn)是核心坍缩超新星的一个高度异质的亚类,其光谱特征是与致密周星际介质(CSM)的相互作用。在这里,我们使用 MOSFiT(瞬变模块化开源拟合器)对 142 个存档 SNeIIn 的光变曲线进行了系统建模。我们发现,SNIIn 的观测和推断属性各不相同,但存在一些趋势。典型的SN CSM是致密的($\sim$10$^{-12}$gcm$^{-3}$),CSM的几何形状多种多样,CSM的平均质量为$\sim$1M$_\odot$。喷出物通常是大质量的($\gtrsim10$M$_\odot$),这表明它们是大质量的原生系统。我们发现SNeIIn的CSM质量与上升时间和下降时间之间存在正相关。我们估算了样本的质量损失率(在有光谱的情况下),发现质量损失率的中位数很高,为$\sim$10$^{-2}$M$_\odot$yr$^{-1}$,范围在10$^{-4}$--1M$_\odot$yr$^{-1}$之间。这些质量损失率与发光蓝变星大爆发时的质量损失最为相似,与文献中的直接原生体探测结果一致。我们还讨论了双星相互作用可能扮演的角色,得出的结论是,我们的 SNeIIn 至少有一部分可能来自大质量双星系统。最后,我们估计即将在维拉-C-鲁宾天文台(Vera C. Rubin Observatory)进行的 "时空遗产巡天"(Legacy Survey of Space and Time)的探测率为1.6$\times$10$^5$yr$^{-1}$。
Unveiling the Diversity of Type IIn Supernovae via Systematic Light Curve Modeling
Type IIn supernovae (SNeIIn) are a highly heterogeneous subclass of
core-collapse supernovae, spectroscopically characterized by signatures of
interaction with a dense circumstellar medium (CSM). Here we systematically
model the light curves of 142 archival SNeIIn using MOSFiT (the Modular Open
Source Fitter for Transients). We find that the observed and inferred
properties of SNIIn are diverse, but there are some trends. The typical SN CSM
is dense ($\sim$10$^{-12}$gcm$^{-3}$) with highly diverse CSM geometry, with a
median CSM mass of $\sim$1M$_\odot$. The ejecta are typically massive
($\gtrsim10$M$_\odot$), suggesting massive progenitor systems. We find positive
correlations between the CSM mass and the rise and fall times of SNeIIn.
Furthermore there are positive correlations between the rise time and fall
times and the $r$-band luminosity. We estimate the mass-loss rates of our
sample (where spectroscopy is available) and find a high median mass-loss rate
of $\sim$10$^{-2}$M$_\odot$yr$^{-1}$, with a range between
10$^{-4}$--1M$_\odot$yr$^{-1}$. These mass-loss rates are most similar to the
mass loss from great eruptions of luminous blue variables, consistent with the
direct progenitor detections in the literature. We also discuss the role that
binary interactions may play, concluding that at least some of our SNeIIn may
be from massive binary systems. Finally, we estimate a detection rate of
1.6$\times$10$^5$yr$^{-1}$ in the upcoming Legacy Survey of Space and Time at
the Vera C. Rubin Observatory.