一些精确单河道范畴同调上的梯度Lie结构

Pub Date : 2024-09-18 DOI:10.4310/hha.2024.v26.n2.a4
Y. Volkov, S. Witherspoon
{"title":"一些精确单河道范畴同调上的梯度Lie结构","authors":"Y. Volkov, S. Witherspoon","doi":"10.4310/hha.2024.v26.n2.a4","DOIUrl":null,"url":null,"abstract":"For some exact monoidal categories, we describe explicitly a connection between topological and algebraic definitions of the Lie bracket on the extension algebra of the unit object. The topological definition, due to Schwede and to Hermann, involves loops in extension categories. The algebraic definition, due to the first author, involves homotopy liftings of maps. As a consequence of our description, we prove that the topological definition indeed yields a Gerstenhaber algebra structure in this monoidal category setting. This answers a question of Hermann for those exact monoidal categories in which the unit object has a particular type of resolution that is called power flat. For use in proofs, we generalize $A_\\infty$-coderivation and homotopy lifting techniques from bimodule categories to these exact monoidal categories.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graded Lie structure on cohomology of some exact monoidal categories\",\"authors\":\"Y. Volkov, S. Witherspoon\",\"doi\":\"10.4310/hha.2024.v26.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For some exact monoidal categories, we describe explicitly a connection between topological and algebraic definitions of the Lie bracket on the extension algebra of the unit object. The topological definition, due to Schwede and to Hermann, involves loops in extension categories. The algebraic definition, due to the first author, involves homotopy liftings of maps. As a consequence of our description, we prove that the topological definition indeed yields a Gerstenhaber algebra structure in this monoidal category setting. This answers a question of Hermann for those exact monoidal categories in which the unit object has a particular type of resolution that is called power flat. For use in proofs, we generalize $A_\\\\infty$-coderivation and homotopy lifting techniques from bimodule categories to these exact monoidal categories.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n2.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n2.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于某些精确一元范畴,我们明确描述了单位客体的外延代数上列括号的拓扑定义与代数定义之间的联系。拓扑定义是施韦德(Schwede)和赫尔曼(Hermann)提出的,涉及外延范畴中的循环。代数定义出自第一作者之手,涉及映射的同调提升。作为我们描述的结果,我们证明了拓扑定义在这个单环范畴设置中确实产生了格尔斯滕哈伯代数结构。这回答了赫尔曼提出的一个问题,即在那些精确单元范畴中,单位对象具有一种被称为幂平的特殊解析类型。为了在证明中使用,我们把双模范畴中的$A_\infty$编码和同调提升技术推广到了这些精确单元范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Graded Lie structure on cohomology of some exact monoidal categories
For some exact monoidal categories, we describe explicitly a connection between topological and algebraic definitions of the Lie bracket on the extension algebra of the unit object. The topological definition, due to Schwede and to Hermann, involves loops in extension categories. The algebraic definition, due to the first author, involves homotopy liftings of maps. As a consequence of our description, we prove that the topological definition indeed yields a Gerstenhaber algebra structure in this monoidal category setting. This answers a question of Hermann for those exact monoidal categories in which the unit object has a particular type of resolution that is called power flat. For use in proofs, we generalize $A_\infty$-coderivation and homotopy lifting techniques from bimodule categories to these exact monoidal categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信