压缩氘氚和质子硼等离子体中聚变燃烧波的动力学研究

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Michael J. Lavell, Ayden J. Kish, Andrew T. Sexton, Eugene S. Evans, Ibrahim Mohammad, Sara Gomez-Ramirez, William Scullin, Marcus Borscz, Sergey Pikuz, Thomas A. Mehlhorn, Max Tabak, Greg Ainsworth, Adam B. Sefkow
{"title":"压缩氘氚和质子硼等离子体中聚变燃烧波的动力学研究","authors":"Michael J. Lavell, Ayden J. Kish, Andrew T. Sexton, Eugene S. Evans, Ibrahim Mohammad, Sara Gomez-Ramirez, William Scullin, Marcus Borscz, Sergey Pikuz, Thomas A. Mehlhorn, Max Tabak, Greg Ainsworth, Adam B. Sefkow","doi":"10.3389/fphy.2024.1440037","DOIUrl":null,"url":null,"abstract":"We present particle-in-cell simulations with Monte Carlo collisions of fusion burn waves in compressed deuterium–tritium and proton–boron plasmas. We study the energy balance in the one-dimensional expansion of a hot-spot by simulating Coulomb collisions, fusion reactions, and bremsstrahlung emission with a Monte Carlo model and inverse bremsstrahlung absorption using a new PIC model. This allows us to self-consistently capture the alpha particle heating and radiative losses in the expanding hot-spot and surrounding cold fuel. After verifying our model in a code-to-code comparison with both kinetic and fluid codes for the case of a deuterium–tritium hot-spot, we simulate the expansion of a proton–boron hot-spot initialized at 200 keV and 1,000 g/<jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msup><mml:mrow><mml:mtext>cm</mml:mtext></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math></jats:inline-formula>. Our model predicts that energy radiated by the hot-spot is recaptured by the surrounding high-density opaque fuel reducing the expansion work done by the propagating burn wave. As a result, we find the net fusion energy produced over the course of $20$∼ps is twice the initial hot-spot energy independent of whether radiation physics is included.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"10 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A kinetic study of fusion burn waves in compressed deuterium–tritium and proton–boron plasmas\",\"authors\":\"Michael J. Lavell, Ayden J. Kish, Andrew T. Sexton, Eugene S. Evans, Ibrahim Mohammad, Sara Gomez-Ramirez, William Scullin, Marcus Borscz, Sergey Pikuz, Thomas A. Mehlhorn, Max Tabak, Greg Ainsworth, Adam B. Sefkow\",\"doi\":\"10.3389/fphy.2024.1440037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present particle-in-cell simulations with Monte Carlo collisions of fusion burn waves in compressed deuterium–tritium and proton–boron plasmas. We study the energy balance in the one-dimensional expansion of a hot-spot by simulating Coulomb collisions, fusion reactions, and bremsstrahlung emission with a Monte Carlo model and inverse bremsstrahlung absorption using a new PIC model. This allows us to self-consistently capture the alpha particle heating and radiative losses in the expanding hot-spot and surrounding cold fuel. After verifying our model in a code-to-code comparison with both kinetic and fluid codes for the case of a deuterium–tritium hot-spot, we simulate the expansion of a proton–boron hot-spot initialized at 200 keV and 1,000 g/<jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msup><mml:mrow><mml:mtext>cm</mml:mtext></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math></jats:inline-formula>. Our model predicts that energy radiated by the hot-spot is recaptured by the surrounding high-density opaque fuel reducing the expansion work done by the propagating burn wave. As a result, we find the net fusion energy produced over the course of $20$∼ps is twice the initial hot-spot energy independent of whether radiation physics is included.\",\"PeriodicalId\":12507,\"journal\":{\"name\":\"Frontiers in Physics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3389/fphy.2024.1440037\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1440037","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了在压缩氘-氚和质子-硼等离子体中利用蒙特卡洛碰撞对聚变燃烧波进行的粒子入胞模拟。我们通过使用蒙特卡洛模型模拟库仑碰撞、聚变反应和轫致辐射,以及使用新的 PIC 模型模拟反轫致辐射吸收,研究了热点一维膨胀过程中的能量平衡。这使我们能够自洽地捕捉到正在膨胀的热点和周围冷燃料中的α粒子加热和辐射损失。在与氘氚热斑的动力学和流体代码进行代码间比较验证了我们的模型之后,我们模拟了质子硼热斑在初始化为 200 keV 和 1,000 g/cm3 时的膨胀。根据我们的模型预测,热点辐射的能量会被周围的高密度不透明燃料重新捕获,从而减少了燃烧波传播所做的膨胀功。因此,我们发现在 20 美元∼ps 的过程中产生的净核聚变能量是初始热点能量的两倍,与是否包含辐射物理无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A kinetic study of fusion burn waves in compressed deuterium–tritium and proton–boron plasmas
We present particle-in-cell simulations with Monte Carlo collisions of fusion burn waves in compressed deuterium–tritium and proton–boron plasmas. We study the energy balance in the one-dimensional expansion of a hot-spot by simulating Coulomb collisions, fusion reactions, and bremsstrahlung emission with a Monte Carlo model and inverse bremsstrahlung absorption using a new PIC model. This allows us to self-consistently capture the alpha particle heating and radiative losses in the expanding hot-spot and surrounding cold fuel. After verifying our model in a code-to-code comparison with both kinetic and fluid codes for the case of a deuterium–tritium hot-spot, we simulate the expansion of a proton–boron hot-spot initialized at 200 keV and 1,000 g/cm3. Our model predicts that energy radiated by the hot-spot is recaptured by the surrounding high-density opaque fuel reducing the expansion work done by the propagating burn wave. As a result, we find the net fusion energy produced over the course of $20$∼ps is twice the initial hot-spot energy independent of whether radiation physics is included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信