给定阶数和最小阶数的非哈密顿连接图的最大尺寸

Leilei Zhang
{"title":"给定阶数和最小阶数的非哈密顿连接图的最大尺寸","authors":"Leilei Zhang","doi":"arxiv-2409.10255","DOIUrl":null,"url":null,"abstract":"In this paper, we determine the maximum size of a nonhamiltonian-connected\ngraph with prescribed order and minimum degree. We also characterize the\nextremal graphs that attain this maximum size. This work generalizes a previous\nresult obtained by Ore [ J. Math. Pures Appl. 42 (1963) 21-27] and further\nextends a theorem proved by Ho, Lin, Tan, Hsu, and Hsu [Appl. Math. Lett. 23\n(2010) 26-29]. As a corollary of our main result, we determine the maximum size\nof a $k$-connected nonhamiltonian-connected graph with a given order.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximum size of a nonhamiltonian-connected graph with given order and minimum degree\",\"authors\":\"Leilei Zhang\",\"doi\":\"arxiv-2409.10255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we determine the maximum size of a nonhamiltonian-connected\\ngraph with prescribed order and minimum degree. We also characterize the\\nextremal graphs that attain this maximum size. This work generalizes a previous\\nresult obtained by Ore [ J. Math. Pures Appl. 42 (1963) 21-27] and further\\nextends a theorem proved by Ho, Lin, Tan, Hsu, and Hsu [Appl. Math. Lett. 23\\n(2010) 26-29]. As a corollary of our main result, we determine the maximum size\\nof a $k$-connected nonhamiltonian-connected graph with a given order.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们确定了具有规定阶数和最小度数的非哈密顿连接图的最大尺寸。我们还描述了达到这个最大尺寸的极端图的特征。这项工作概括了之前由 Ore [ J. Math. Pures Appl.作为我们主要结果的推论,我们确定了具有给定阶的 $k$ 连接非哈密顿连接图的最大尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The maximum size of a nonhamiltonian-connected graph with given order and minimum degree
In this paper, we determine the maximum size of a nonhamiltonian-connected graph with prescribed order and minimum degree. We also characterize the extremal graphs that attain this maximum size. This work generalizes a previous result obtained by Ore [ J. Math. Pures Appl. 42 (1963) 21-27] and further extends a theorem proved by Ho, Lin, Tan, Hsu, and Hsu [Appl. Math. Lett. 23 (2010) 26-29]. As a corollary of our main result, we determine the maximum size of a $k$-connected nonhamiltonian-connected graph with a given order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信