识别 X$ 连接的二元组图和二元组图的自形群

Rachel Barber, Ted Dobson, Gregory Robson
{"title":"识别 X$ 连接的二元组图和二元组图的自形群","authors":"Rachel Barber, Ted Dobson, Gregory Robson","doi":"arxiv-2409.11092","DOIUrl":null,"url":null,"abstract":"We examine bicoset digraphs and their natural properties from the point of\nview of symmetry. We then consider connected bicoset digraphs that are\n$X$-joins with collections of empty graphs, and show that their automorphism\ngroups can be obtained from their natural irreducible quotients. We then show\nthat such digraphs can be recognized from their connection sets.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognizing bicoset digraphs which are $X$-joins and automorphism groups of bicoset digraphs\",\"authors\":\"Rachel Barber, Ted Dobson, Gregory Robson\",\"doi\":\"arxiv-2409.11092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine bicoset digraphs and their natural properties from the point of\\nview of symmetry. We then consider connected bicoset digraphs that are\\n$X$-joins with collections of empty graphs, and show that their automorphism\\ngroups can be obtained from their natural irreducible quotients. We then show\\nthat such digraphs can be recognized from their connection sets.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从对称性的角度研究了二元组数图及其自然属性。然后,我们考虑了具有空图形集合的$X$连接的连接二元组数图,并证明它们的自形群可以从它们的自然不可还原商中获得。然后,我们证明可以从连接集中识别出这类数图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing bicoset digraphs which are $X$-joins and automorphism groups of bicoset digraphs
We examine bicoset digraphs and their natural properties from the point of view of symmetry. We then consider connected bicoset digraphs that are $X$-joins with collections of empty graphs, and show that their automorphism groups can be obtained from their natural irreducible quotients. We then show that such digraphs can be recognized from their connection sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信