网格的 S 胶和

Christian HerrmannTechnische Universität Darmstadt, Dale R. Worley
{"title":"网格的 S 胶和","authors":"Christian HerrmannTechnische Universität Darmstadt, Dale R. Worley","doi":"arxiv-2409.10738","DOIUrl":null,"url":null,"abstract":"For many equation-theoretical questions about modular lattices, Hall and\nDilworth give a useful construction: Let $L_0$ be a lattice with largest\nelement $u_0$, $L_1$ be a lattice disjoint from $L_0$ with smallest element\n$v_1$, and $a \\in L_0$, $b \\in L_1$ such that the intervals $[a, u_0]$ and\n$[v_1, b]$ are isomorphic. Then, after identifying those intervals you obtain\n$L_0 \\cup L_1$, a lattice structure whose partial order is the transitive\nrelation generated by the partial orders of $L_0$ and $L_1$. It is modular if\n$L_0$ and $L_1$ are modular. Since in this construction the index set $\\{0,\n1\\}$ is essentially a chain, this work presents a method -- termed S-glued --\nwhereby a general family $L_x\\ (x \\in S)$ of lattices can specify a lattice\nwith the small-scale lattice structure determined by the $L_x$ and the\nlarge-scale structure determined by $S$. A crucial application is representing\nfinite-length modular lattices using projective geometries.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S-Glued sums of lattices\",\"authors\":\"Christian HerrmannTechnische Universität Darmstadt, Dale R. Worley\",\"doi\":\"arxiv-2409.10738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many equation-theoretical questions about modular lattices, Hall and\\nDilworth give a useful construction: Let $L_0$ be a lattice with largest\\nelement $u_0$, $L_1$ be a lattice disjoint from $L_0$ with smallest element\\n$v_1$, and $a \\\\in L_0$, $b \\\\in L_1$ such that the intervals $[a, u_0]$ and\\n$[v_1, b]$ are isomorphic. Then, after identifying those intervals you obtain\\n$L_0 \\\\cup L_1$, a lattice structure whose partial order is the transitive\\nrelation generated by the partial orders of $L_0$ and $L_1$. It is modular if\\n$L_0$ and $L_1$ are modular. Since in this construction the index set $\\\\{0,\\n1\\\\}$ is essentially a chain, this work presents a method -- termed S-glued --\\nwhereby a general family $L_x\\\\ (x \\\\in S)$ of lattices can specify a lattice\\nwith the small-scale lattice structure determined by the $L_x$ and the\\nlarge-scale structure determined by $S$. A crucial application is representing\\nfinite-length modular lattices using projective geometries.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于有关模态网格的许多方程理论问题,霍尔和迪尔沃斯给出了一个有用的构造:让 $L_0$ 是具有最大元素 $u_0$ 的网格,$L_1$ 是与 $L_0$ 不相交的网格,具有最小元素 $v_1$,并且 $a (在 L_0$ 中)、$b (在 L_1$ 中)使得区间 $[a, u_0]$ 和 $[v_1, b]$ 是同构的。然后,在确定这些区间后,就得到$L_0 \cup L_1$,这是一个网格结构,其偏序是由$L_0$和$L_1$的偏序产生的反向关系。如果 $L_0$ 和 $L_1$ 是模态的,那么它就是模态的。由于在这种构造中,索引集 $\{0,1\}$ 本质上是一个链,因此本研究提出了一种方法--称为 S-glued --在这种方法中,一般的网格族 $L_x\ (x \in S)$ 可以指定一个小尺度网格结构由 $L_x$ 决定、大尺度结构由 $S$ 决定的网格。一个重要的应用是用投影几何来表示无限长的模态网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
S-Glued sums of lattices
For many equation-theoretical questions about modular lattices, Hall and Dilworth give a useful construction: Let $L_0$ be a lattice with largest element $u_0$, $L_1$ be a lattice disjoint from $L_0$ with smallest element $v_1$, and $a \in L_0$, $b \in L_1$ such that the intervals $[a, u_0]$ and $[v_1, b]$ are isomorphic. Then, after identifying those intervals you obtain $L_0 \cup L_1$, a lattice structure whose partial order is the transitive relation generated by the partial orders of $L_0$ and $L_1$. It is modular if $L_0$ and $L_1$ are modular. Since in this construction the index set $\{0, 1\}$ is essentially a chain, this work presents a method -- termed S-glued -- whereby a general family $L_x\ (x \in S)$ of lattices can specify a lattice with the small-scale lattice structure determined by the $L_x$ and the large-scale structure determined by $S$. A crucial application is representing finite-length modular lattices using projective geometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信