具有不可忽略的缺失响应的平滑部分线性变化系数量化回归

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2024-09-19 DOI:10.1007/s00184-024-00974-0
Xiaowen Liang, Boping Tian, Lijian Yang
{"title":"具有不可忽略的缺失响应的平滑部分线性变化系数量化回归","authors":"Xiaowen Liang, Boping Tian, Lijian Yang","doi":"10.1007/s00184-024-00974-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a smoothed quantile regression estimator and variable selection procedure for partially linear varying coefficient models with nonignorable nonresponse. To avoid the computational problem caused by the non-smooth quantile loss function, we employ the kernel smoothing method. To address the identifiability issue, we use an instrument and estimate the parametric propensity function based on the generalized method of moments. Once the propensity is estimated, we construct the bias-corrected estimating equations utilizing the inverse probability weighting approach. Then, we apply the empirical likelihood method to obtain an unbiased estimator. The asymptotic properties of the proposed estimators are established for both the parametric and nonparametric parts. Meanwhile, variable selection is considered by using the SCAD penalty. The finite-sample performance of the estimators is studied through simulations, and a real-data example is also presented.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"119 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoothed partially linear varying coefficient quantile regression with nonignorable missing response\",\"authors\":\"Xiaowen Liang, Boping Tian, Lijian Yang\",\"doi\":\"10.1007/s00184-024-00974-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a smoothed quantile regression estimator and variable selection procedure for partially linear varying coefficient models with nonignorable nonresponse. To avoid the computational problem caused by the non-smooth quantile loss function, we employ the kernel smoothing method. To address the identifiability issue, we use an instrument and estimate the parametric propensity function based on the generalized method of moments. Once the propensity is estimated, we construct the bias-corrected estimating equations utilizing the inverse probability weighting approach. Then, we apply the empirical likelihood method to obtain an unbiased estimator. The asymptotic properties of the proposed estimators are established for both the parametric and nonparametric parts. Meanwhile, variable selection is considered by using the SCAD penalty. The finite-sample performance of the estimators is studied through simulations, and a real-data example is also presented.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00974-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00974-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种平滑量化回归估计器和变量选择程序,适用于具有不可忽略非响应的部分线性变化系数模型。为了避免非平滑量值损失函数带来的计算问题,我们采用了核平滑方法。为了解决可识别性问题,我们使用了一种工具,并根据广义矩方法估计了参数倾向函数。一旦估计出倾向,我们就利用反概率加权法构建偏差校正估计方程。然后,我们运用经验似然法得到一个无偏估计器。对于参数和非参数部分,我们都建立了所提出的估计器的渐近特性。同时,利用 SCAD 惩罚考虑了变量选择。通过模拟研究了估计器的有限样本性能,并给出了一个真实数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Smoothed partially linear varying coefficient quantile regression with nonignorable missing response

Smoothed partially linear varying coefficient quantile regression with nonignorable missing response

In this paper, we propose a smoothed quantile regression estimator and variable selection procedure for partially linear varying coefficient models with nonignorable nonresponse. To avoid the computational problem caused by the non-smooth quantile loss function, we employ the kernel smoothing method. To address the identifiability issue, we use an instrument and estimate the parametric propensity function based on the generalized method of moments. Once the propensity is estimated, we construct the bias-corrected estimating equations utilizing the inverse probability weighting approach. Then, we apply the empirical likelihood method to obtain an unbiased estimator. The asymptotic properties of the proposed estimators are established for both the parametric and nonparametric parts. Meanwhile, variable selection is considered by using the SCAD penalty. The finite-sample performance of the estimators is studied through simulations, and a real-data example is also presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信