{"title":"GL(2, q) 的完全还原无立方可解 p'- 子群的共轭类","authors":"Prashun Kumar, Geetha Venkataraman","doi":"arxiv-2409.08571","DOIUrl":null,"url":null,"abstract":"Let m be a cube-free positive integer and let p be a prime such that p does\nnot divide m. In this paper we find the number of conjugacy classes of\ncompletely reducible solvable cube-free subgroups in GL(2, q) of order m, where\nq is a power of p.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjugacy classes of completely reducible cube-free solvable p'-subgroups of GL(2, q)\",\"authors\":\"Prashun Kumar, Geetha Venkataraman\",\"doi\":\"arxiv-2409.08571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let m be a cube-free positive integer and let p be a prime such that p does\\nnot divide m. In this paper we find the number of conjugacy classes of\\ncompletely reducible solvable cube-free subgroups in GL(2, q) of order m, where\\nq is a power of p.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 m 是一个无立方的正整数,让 p 是一个素数,使得 p 不能整除 m。在本文中,我们要找出阶数为 m 的 GL(2, q) 中完全可还原可解的无立方子群的共轭类的数量,其中 q 是 p 的幂。
Conjugacy classes of completely reducible cube-free solvable p'-subgroups of GL(2, q)
Let m be a cube-free positive integer and let p be a prime such that p does
not divide m. In this paper we find the number of conjugacy classes of
completely reducible solvable cube-free subgroups in GL(2, q) of order m, where
q is a power of p.