{"title":"辫状群 m$ 级同余子群的生成器","authors":"Ishan Banerjee, Peter Huxford","doi":"arxiv-2409.09612","DOIUrl":null,"url":null,"abstract":"We prove for $m\\geq1$ and $n\\geq5$ that the level $m$ congruence subgroup\n$B_n[m]$ of the braid group $B_n$ associated to the integral Burau\nrepresentation $B_n\\to\\mathrm{GL}_n(\\mathbb{Z})$ is generated by $m$th powers\nof half-twists and the braid Torelli group. This solves a problem of Margalit,\ngeneralizing work of Assion, Brendle--Margalit, Nakamura, Stylianakis and\nWajnryb.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generators for the level $m$ congruence subgroups of braid groups\",\"authors\":\"Ishan Banerjee, Peter Huxford\",\"doi\":\"arxiv-2409.09612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove for $m\\\\geq1$ and $n\\\\geq5$ that the level $m$ congruence subgroup\\n$B_n[m]$ of the braid group $B_n$ associated to the integral Burau\\nrepresentation $B_n\\\\to\\\\mathrm{GL}_n(\\\\mathbb{Z})$ is generated by $m$th powers\\nof half-twists and the braid Torelli group. This solves a problem of Margalit,\\ngeneralizing work of Assion, Brendle--Margalit, Nakamura, Stylianakis and\\nWajnryb.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generators for the level $m$ congruence subgroups of braid groups
We prove for $m\geq1$ and $n\geq5$ that the level $m$ congruence subgroup
$B_n[m]$ of the braid group $B_n$ associated to the integral Burau
representation $B_n\to\mathrm{GL}_n(\mathbb{Z})$ is generated by $m$th powers
of half-twists and the braid Torelli group. This solves a problem of Margalit,
generalizing work of Assion, Brendle--Margalit, Nakamura, Stylianakis and
Wajnryb.