在骨折手术小鼠模型中,小胶质细胞通过兴奋性突触消除介导记忆功能障碍

IF 9.3 1区 医学 Q1 IMMUNOLOGY
Shuming Li, Huan Liu, Pin Lv, Yu Yao, Liangyu Peng, Tianjiao Xia, Chao Yan, Zhengliang Ma, Zhang-Peng Chen, Chunjie Zhao, Xiaoping Gu
{"title":"在骨折手术小鼠模型中,小胶质细胞通过兴奋性突触消除介导记忆功能障碍","authors":"Shuming Li, Huan Liu, Pin Lv, Yu Yao, Liangyu Peng, Tianjiao Xia, Chao Yan, Zhengliang Ma, Zhang-Peng Chen, Chunjie Zhao, Xiaoping Gu","doi":"10.1186/s12974-024-03216-2","DOIUrl":null,"url":null,"abstract":"Cognitive impairment is a common issue among human patients undergoing surgery, yet the neural mechanism causing this impairment remains unidentified. Surgical procedures often lead to glial cell activation and neuronal hypoexcitability, both of which are known to contribute to postoperative cognitive dysfunction (POCD). However, the role of neuron-glia crosstalk in the pathology of POCD is still unclear. Through integrated transcriptomics and proteomics analyses, we found that the complement cascades and microglial phagocytotic signaling pathways are activated in a mouse model of POCD. Following surgery, there is a significant increase in the presence of complement C3, but not C1q, in conjunction with presynaptic elements. This triggers a reduction in excitatory synapses, a decline in excitatory synaptic transmission, and subsequent memory deficits in the mouse model. By genetically knockout out C3ar1 or inhibiting p-STAT3 signaling, we successfully prevented neuronal hypoexcitability and alleviated cognitive impairment in the mouse model. Therefore, targeting the C3aR and downstream p-STAT3 signaling pathways could serve as potential therapeutic approaches for mitigating POCD.","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microglia mediate memory dysfunction via excitatory synaptic elimination in a fracture surgery mouse model\",\"authors\":\"Shuming Li, Huan Liu, Pin Lv, Yu Yao, Liangyu Peng, Tianjiao Xia, Chao Yan, Zhengliang Ma, Zhang-Peng Chen, Chunjie Zhao, Xiaoping Gu\",\"doi\":\"10.1186/s12974-024-03216-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive impairment is a common issue among human patients undergoing surgery, yet the neural mechanism causing this impairment remains unidentified. Surgical procedures often lead to glial cell activation and neuronal hypoexcitability, both of which are known to contribute to postoperative cognitive dysfunction (POCD). However, the role of neuron-glia crosstalk in the pathology of POCD is still unclear. Through integrated transcriptomics and proteomics analyses, we found that the complement cascades and microglial phagocytotic signaling pathways are activated in a mouse model of POCD. Following surgery, there is a significant increase in the presence of complement C3, but not C1q, in conjunction with presynaptic elements. This triggers a reduction in excitatory synapses, a decline in excitatory synaptic transmission, and subsequent memory deficits in the mouse model. By genetically knockout out C3ar1 or inhibiting p-STAT3 signaling, we successfully prevented neuronal hypoexcitability and alleviated cognitive impairment in the mouse model. Therefore, targeting the C3aR and downstream p-STAT3 signaling pathways could serve as potential therapeutic approaches for mitigating POCD.\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-024-03216-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03216-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

认知功能障碍是接受外科手术的人类患者的常见问题,但导致这种障碍的神经机制仍未确定。外科手术通常会导致神经胶质细胞活化和神经元兴奋性降低,而这两种情况都是导致术后认知功能障碍(POCD)的原因。然而,神经元-胶质细胞串扰在 POCD 病理学中的作用仍不清楚。通过综合转录组学和蛋白质组学分析,我们发现补体级联和小胶质细胞吞噬信号通路在 POCD 小鼠模型中被激活。手术后,与突触前元件结合的补体 C3(而非 C1q)显著增加。这引发了兴奋性突触的减少、兴奋性突触传递的下降以及小鼠模型随后出现的记忆障碍。通过基因敲除 C3ar1 或抑制 p-STAT3 信号转导,我们成功地防止了小鼠模型中神经元的低兴奋性并缓解了认知障碍。因此,靶向 C3aR 和下游 p-STAT3 信号通路可作为缓解 POCD 的潜在治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microglia mediate memory dysfunction via excitatory synaptic elimination in a fracture surgery mouse model
Cognitive impairment is a common issue among human patients undergoing surgery, yet the neural mechanism causing this impairment remains unidentified. Surgical procedures often lead to glial cell activation and neuronal hypoexcitability, both of which are known to contribute to postoperative cognitive dysfunction (POCD). However, the role of neuron-glia crosstalk in the pathology of POCD is still unclear. Through integrated transcriptomics and proteomics analyses, we found that the complement cascades and microglial phagocytotic signaling pathways are activated in a mouse model of POCD. Following surgery, there is a significant increase in the presence of complement C3, but not C1q, in conjunction with presynaptic elements. This triggers a reduction in excitatory synapses, a decline in excitatory synaptic transmission, and subsequent memory deficits in the mouse model. By genetically knockout out C3ar1 or inhibiting p-STAT3 signaling, we successfully prevented neuronal hypoexcitability and alleviated cognitive impairment in the mouse model. Therefore, targeting the C3aR and downstream p-STAT3 signaling pathways could serve as potential therapeutic approaches for mitigating POCD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信