{"title":"顺序适应的成本和均方误差的下限","authors":"Sergey Tarima, Nancy Flournoy","doi":"10.1007/s00362-024-01565-x","DOIUrl":null,"url":null,"abstract":"<p>Informative interim adaptations lead to random sample sizes. The random sample size becomes a component of the sufficient statistic and estimation based solely on observed samples or on the likelihood function does not use all available statistical evidence. The total Fisher Information (FI) is decomposed into the design FI and a conditional-on-design FI. The FI unspent by a design’s informative interim adaptation decomposes further into a weighted linear combination of FIs conditional-on-stopping decisions. Then, these components are used to determine the new lower mean squared error (MSE) in post-adaptation estimation because the Cramer–Rao lower bound (1945, 1946) and its sequential version suggested by Wolfowitz (Ann Math Stat 18(2):215–230, 1947) for non-informative stopping are not applicable to post-informative-adaptation estimation. In addition, we also show that the new proposed lower boundary on the MSE is reached by the maximum likelihood estimators in designs with informative adaptations when data are coming from one-parameter exponential family. Theoretical results are illustrated with simple normal samples collected according to a two-stage design with a possibility of early stopping.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"207 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cost of sequential adaptation and the lower bound for mean squared error\",\"authors\":\"Sergey Tarima, Nancy Flournoy\",\"doi\":\"10.1007/s00362-024-01565-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Informative interim adaptations lead to random sample sizes. The random sample size becomes a component of the sufficient statistic and estimation based solely on observed samples or on the likelihood function does not use all available statistical evidence. The total Fisher Information (FI) is decomposed into the design FI and a conditional-on-design FI. The FI unspent by a design’s informative interim adaptation decomposes further into a weighted linear combination of FIs conditional-on-stopping decisions. Then, these components are used to determine the new lower mean squared error (MSE) in post-adaptation estimation because the Cramer–Rao lower bound (1945, 1946) and its sequential version suggested by Wolfowitz (Ann Math Stat 18(2):215–230, 1947) for non-informative stopping are not applicable to post-informative-adaptation estimation. In addition, we also show that the new proposed lower boundary on the MSE is reached by the maximum likelihood estimators in designs with informative adaptations when data are coming from one-parameter exponential family. Theoretical results are illustrated with simple normal samples collected according to a two-stage design with a possibility of early stopping.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"207 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-024-01565-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01565-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
有启发性的临时调整会产生随机样本规模。随机样本规模成为充分统计量的一个组成部分,而仅仅基于观测样本或似然函数的估计并没有使用所有可用的统计证据。总费雪信息 (FI) 分解为设计 FI 和条件设计 FI。设计信息中期调整未消耗的费雪信息进一步分解为以停止决策为条件的费雪信息的加权线性组合。然后,这些成分被用来确定适应后估计中新的均方误差下限(MSE),因为 Wolfowitz(Ann Math Stat 18(2):215-230, 1947)提出的用于非信息停止的 Cramer-Rao 下限(1945, 1946)及其顺序版本不适用于信息适应后估计。此外,我们还证明,当数据来自单参数指数族时,在有信息适应的设计中,最大似然估计值可以达到新提出的 MSE 下限。理论结果以根据两阶段设计收集的简单正态样本为例作了说明,该设计有可能提前停止。
The cost of sequential adaptation and the lower bound for mean squared error
Informative interim adaptations lead to random sample sizes. The random sample size becomes a component of the sufficient statistic and estimation based solely on observed samples or on the likelihood function does not use all available statistical evidence. The total Fisher Information (FI) is decomposed into the design FI and a conditional-on-design FI. The FI unspent by a design’s informative interim adaptation decomposes further into a weighted linear combination of FIs conditional-on-stopping decisions. Then, these components are used to determine the new lower mean squared error (MSE) in post-adaptation estimation because the Cramer–Rao lower bound (1945, 1946) and its sequential version suggested by Wolfowitz (Ann Math Stat 18(2):215–230, 1947) for non-informative stopping are not applicable to post-informative-adaptation estimation. In addition, we also show that the new proposed lower boundary on the MSE is reached by the maximum likelihood estimators in designs with informative adaptations when data are coming from one-parameter exponential family. Theoretical results are illustrated with simple normal samples collected according to a two-stage design with a possibility of early stopping.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.