{"title":"由 TRIM28 介导的 NUP37 积累可促进脂质合成,从而加速 HCC 的进展","authors":"Zhiyi Liu, Qinghe Hu, Qing Luo, Guowei Zhang, Weichao Yang, Kuan Cao, Ruqiao Fang, Renhao Wang, Hengliang Shi, Bin Zhang","doi":"10.1038/s41388-024-03167-1","DOIUrl":null,"url":null,"abstract":"Elevated intracellular lipid synthesis is important for hepatocellular carcinoma (HCC) progression. Our study aimed to identify the role of nucleoporin 37 (NUP37) in lipid synthesis and HCC progression. The expression of NUP37 was significantly upregulated in HCC and associated with a poor prognosis. NUP37 silencing suppressed lipid synthesis, proliferation, migration, and invasion of HCC cells in vitro, and restrained tumor growth in xenograft mouse models in vivo. Next, we found the high expression of NUP37 in HCC was related to post-translational modifications. Tripartite motif-containing 28 (TRIM28) was identified as an interacting protein of NUP37 and upregulated its protein level. The subsequent analysis revealed that TRIM28-mediated SUMOylation of NUP37 at Lys114/118/246 inhibited K27-linked polyubiquitination of NUP37, which is one reason for its high expression level in HCC. In conclusion, TRIM28 SUMOylates NUP37 to prevent its ubiquitination and proteasomal degradation, increasing the stability of the NUP37 protein, thereby promoting lipid synthesis and the progression of HCC.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUP37 accumulation mediated by TRIM28 enhances lipid synthesis to accelerate HCC progression\",\"authors\":\"Zhiyi Liu, Qinghe Hu, Qing Luo, Guowei Zhang, Weichao Yang, Kuan Cao, Ruqiao Fang, Renhao Wang, Hengliang Shi, Bin Zhang\",\"doi\":\"10.1038/s41388-024-03167-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elevated intracellular lipid synthesis is important for hepatocellular carcinoma (HCC) progression. Our study aimed to identify the role of nucleoporin 37 (NUP37) in lipid synthesis and HCC progression. The expression of NUP37 was significantly upregulated in HCC and associated with a poor prognosis. NUP37 silencing suppressed lipid synthesis, proliferation, migration, and invasion of HCC cells in vitro, and restrained tumor growth in xenograft mouse models in vivo. Next, we found the high expression of NUP37 in HCC was related to post-translational modifications. Tripartite motif-containing 28 (TRIM28) was identified as an interacting protein of NUP37 and upregulated its protein level. The subsequent analysis revealed that TRIM28-mediated SUMOylation of NUP37 at Lys114/118/246 inhibited K27-linked polyubiquitination of NUP37, which is one reason for its high expression level in HCC. In conclusion, TRIM28 SUMOylates NUP37 to prevent its ubiquitination and proteasomal degradation, increasing the stability of the NUP37 protein, thereby promoting lipid synthesis and the progression of HCC.\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41388-024-03167-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41388-024-03167-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
NUP37 accumulation mediated by TRIM28 enhances lipid synthesis to accelerate HCC progression
Elevated intracellular lipid synthesis is important for hepatocellular carcinoma (HCC) progression. Our study aimed to identify the role of nucleoporin 37 (NUP37) in lipid synthesis and HCC progression. The expression of NUP37 was significantly upregulated in HCC and associated with a poor prognosis. NUP37 silencing suppressed lipid synthesis, proliferation, migration, and invasion of HCC cells in vitro, and restrained tumor growth in xenograft mouse models in vivo. Next, we found the high expression of NUP37 in HCC was related to post-translational modifications. Tripartite motif-containing 28 (TRIM28) was identified as an interacting protein of NUP37 and upregulated its protein level. The subsequent analysis revealed that TRIM28-mediated SUMOylation of NUP37 at Lys114/118/246 inhibited K27-linked polyubiquitination of NUP37, which is one reason for its high expression level in HCC. In conclusion, TRIM28 SUMOylates NUP37 to prevent its ubiquitination and proteasomal degradation, increasing the stability of the NUP37 protein, thereby promoting lipid synthesis and the progression of HCC.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.