联立和乔丹烈无穷级数

IF 0.4 3区 数学 Q4 LOGIC
S. V. Pchelintsev
{"title":"联立和乔丹烈无穷级数","authors":"S. V. Pchelintsev","doi":"10.1007/s10469-024-09755-0","DOIUrl":null,"url":null,"abstract":"<p>We look at the interconnection between Lie nilpotent Jordan algebras and Lie nilpotent associative algebras. It is proved that a special Jordan algebra is Lie nilpotent if and only if its associative enveloping algebra is Lie nilpotent. Also it turns out that a Jordan algebra is Lie nilpotent of index 2n + 1 if and only if its algebra of multiplications is Lie nilpotent of index 2n. Finally, we prove a product theorem for Jordan algebras.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"62 5","pages":"413 - 429"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associative and Jordan Lie Nilpotent Algebras\",\"authors\":\"S. V. Pchelintsev\",\"doi\":\"10.1007/s10469-024-09755-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We look at the interconnection between Lie nilpotent Jordan algebras and Lie nilpotent associative algebras. It is proved that a special Jordan algebra is Lie nilpotent if and only if its associative enveloping algebra is Lie nilpotent. Also it turns out that a Jordan algebra is Lie nilpotent of index 2n + 1 if and only if its algebra of multiplications is Lie nilpotent of index 2n. Finally, we prove a product theorem for Jordan algebras.</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"62 5\",\"pages\":\"413 - 429\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-024-09755-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-024-09755-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了李零势约旦代数与李零势关联代数之间的相互联系。研究证明,当且仅当一个特殊的乔丹代数的关联包络代数是 Lie nilpotent 时,它才是 Lie nilpotent 的。此外,当且仅当一个乔丹代数的乘法代数是指数为 2n + 1 的 Lie nilpotent 时,它才是指数为 2n + 1 的 Lie nilpotent。最后,我们证明了乔丹代数的乘积定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Associative and Jordan Lie Nilpotent Algebras

We look at the interconnection between Lie nilpotent Jordan algebras and Lie nilpotent associative algebras. It is proved that a special Jordan algebra is Lie nilpotent if and only if its associative enveloping algebra is Lie nilpotent. Also it turns out that a Jordan algebra is Lie nilpotent of index 2n + 1 if and only if its algebra of multiplications is Lie nilpotent of index 2n. Finally, we prove a product theorem for Jordan algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信