Ghina Zia, Amber Lintz, Clay Hardin, Anna Bottiglieri, Jan Sebek, Punit Prakash
{"title":"评估微波消融设备特性的热致变色模型","authors":"Ghina Zia, Amber Lintz, Clay Hardin, Anna Bottiglieri, Jan Sebek, Punit Prakash","doi":"10.1002/mp.17404","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and purpose</h3>\n \n <p>Thermochromic gel phantoms provide a controlled medium for visual assessment of thermal ablation device performance. However, there are limited studies reporting on the comparative assessment of ablation profiles assessed in thermochromic gel phantoms against those in ex vivo tissue. The objective of this study was to compare microwave ablation zones in a thermochromic tissue-mimicking gel phantom and ex vivo bovine liver and to report on measurements of the temperature-dependent dielectric and thermal properties of the phantom.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Thermochromic polyacrylamide phantoms were fabricated following a previously reported protocol. Phantom samples were heated to temperatures in the range of 20°C–90°C in a temperature-controlled water bath, and colorimetric analysis of images of the phantom taken after heating was used to develop a calibration between color changes and the temperature to which the phantom was heated. Using a custom, 2.45 GHz water-cooled microwave ablation antenna, ablations were performed in fresh ex vivo liver and phantoms using 65 W applied for 5 min or 10 min (<i>n = </i>3 samples in each medium for each power/time combination). Broadband (500 MHz–6 GHz) temperature-dependent dielectric and thermal properties of the phantom were measured over the temperature range of 22°C–100°C.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Colorimetric analysis showed that the sharp change in gel phantom color commences at a temperature of 57°C. Short and long axes of the ablation zone in the phantom (as assessed by the 57°C isotherm) for 65 W, 5 min ablations were aligned with the extents of the ablation zone observed in ex vivo bovine liver. However, for the 65 W, 10 min setting, ablations in the phantom were on average 23.7% smaller in the short axis and 7.4 % smaller in the long axis than those observed in ex vivo liver. Measurements of the temperature-dependent relative permittivity, thermal conductivity, and volumetric heat capacity of the phantom largely followed similar trends to published values for ex vivo liver tissue.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Thermochromic tissue-mimicking phantoms provides a controlled, and reproducible medium for comparative assessment of microwave ablation devices and energy delivery settings. However, ablation zone size and shapes in the thermochromic phantom do not accurately represent ablation sizes and shapes observed in ex vivo liver tissue for high energy delivery treatments (65 W, 10 min). One cause for this limitation is the difference in temperature-dependent thermal and dielectric properties of the thermochromic phantom compared to ex vivo bovine liver tissue, as reported in the present study.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"51 11","pages":"8442-8453"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of thermochromic phantoms for characterizing microwave ablation devices\",\"authors\":\"Ghina Zia, Amber Lintz, Clay Hardin, Anna Bottiglieri, Jan Sebek, Punit Prakash\",\"doi\":\"10.1002/mp.17404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and purpose</h3>\\n \\n <p>Thermochromic gel phantoms provide a controlled medium for visual assessment of thermal ablation device performance. However, there are limited studies reporting on the comparative assessment of ablation profiles assessed in thermochromic gel phantoms against those in ex vivo tissue. The objective of this study was to compare microwave ablation zones in a thermochromic tissue-mimicking gel phantom and ex vivo bovine liver and to report on measurements of the temperature-dependent dielectric and thermal properties of the phantom.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Thermochromic polyacrylamide phantoms were fabricated following a previously reported protocol. Phantom samples were heated to temperatures in the range of 20°C–90°C in a temperature-controlled water bath, and colorimetric analysis of images of the phantom taken after heating was used to develop a calibration between color changes and the temperature to which the phantom was heated. Using a custom, 2.45 GHz water-cooled microwave ablation antenna, ablations were performed in fresh ex vivo liver and phantoms using 65 W applied for 5 min or 10 min (<i>n = </i>3 samples in each medium for each power/time combination). Broadband (500 MHz–6 GHz) temperature-dependent dielectric and thermal properties of the phantom were measured over the temperature range of 22°C–100°C.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Colorimetric analysis showed that the sharp change in gel phantom color commences at a temperature of 57°C. Short and long axes of the ablation zone in the phantom (as assessed by the 57°C isotherm) for 65 W, 5 min ablations were aligned with the extents of the ablation zone observed in ex vivo bovine liver. However, for the 65 W, 10 min setting, ablations in the phantom were on average 23.7% smaller in the short axis and 7.4 % smaller in the long axis than those observed in ex vivo liver. Measurements of the temperature-dependent relative permittivity, thermal conductivity, and volumetric heat capacity of the phantom largely followed similar trends to published values for ex vivo liver tissue.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Thermochromic tissue-mimicking phantoms provides a controlled, and reproducible medium for comparative assessment of microwave ablation devices and energy delivery settings. However, ablation zone size and shapes in the thermochromic phantom do not accurately represent ablation sizes and shapes observed in ex vivo liver tissue for high energy delivery treatments (65 W, 10 min). One cause for this limitation is the difference in temperature-dependent thermal and dielectric properties of the thermochromic phantom compared to ex vivo bovine liver tissue, as reported in the present study.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18384,\"journal\":{\"name\":\"Medical physics\",\"volume\":\"51 11\",\"pages\":\"8442-8453\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mp.17404\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17404","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Assessment of thermochromic phantoms for characterizing microwave ablation devices
Background and purpose
Thermochromic gel phantoms provide a controlled medium for visual assessment of thermal ablation device performance. However, there are limited studies reporting on the comparative assessment of ablation profiles assessed in thermochromic gel phantoms against those in ex vivo tissue. The objective of this study was to compare microwave ablation zones in a thermochromic tissue-mimicking gel phantom and ex vivo bovine liver and to report on measurements of the temperature-dependent dielectric and thermal properties of the phantom.
Methods
Thermochromic polyacrylamide phantoms were fabricated following a previously reported protocol. Phantom samples were heated to temperatures in the range of 20°C–90°C in a temperature-controlled water bath, and colorimetric analysis of images of the phantom taken after heating was used to develop a calibration between color changes and the temperature to which the phantom was heated. Using a custom, 2.45 GHz water-cooled microwave ablation antenna, ablations were performed in fresh ex vivo liver and phantoms using 65 W applied for 5 min or 10 min (n = 3 samples in each medium for each power/time combination). Broadband (500 MHz–6 GHz) temperature-dependent dielectric and thermal properties of the phantom were measured over the temperature range of 22°C–100°C.
Results
Colorimetric analysis showed that the sharp change in gel phantom color commences at a temperature of 57°C. Short and long axes of the ablation zone in the phantom (as assessed by the 57°C isotherm) for 65 W, 5 min ablations were aligned with the extents of the ablation zone observed in ex vivo bovine liver. However, for the 65 W, 10 min setting, ablations in the phantom were on average 23.7% smaller in the short axis and 7.4 % smaller in the long axis than those observed in ex vivo liver. Measurements of the temperature-dependent relative permittivity, thermal conductivity, and volumetric heat capacity of the phantom largely followed similar trends to published values for ex vivo liver tissue.
Conclusion
Thermochromic tissue-mimicking phantoms provides a controlled, and reproducible medium for comparative assessment of microwave ablation devices and energy delivery settings. However, ablation zone size and shapes in the thermochromic phantom do not accurately represent ablation sizes and shapes observed in ex vivo liver tissue for high energy delivery treatments (65 W, 10 min). One cause for this limitation is the difference in temperature-dependent thermal and dielectric properties of the thermochromic phantom compared to ex vivo bovine liver tissue, as reported in the present study.
期刊介绍:
Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments
Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.