在线语言处理中预期和反应能力的通用测量方法

Mario Giulianelli, Andreas Opedal, Ryan Cotterell
{"title":"在线语言处理中预期和反应能力的通用测量方法","authors":"Mario Giulianelli, Andreas Opedal, Ryan Cotterell","doi":"arxiv-2409.10728","DOIUrl":null,"url":null,"abstract":"We introduce a generalization of classic information-theoretic measures of\npredictive uncertainty in online language processing, based on the simulation\nof expected continuations of incremental linguistic contexts. Our framework\nprovides a formal definition of anticipatory and responsive measures, and it\nequips experimenters with the tools to define new, more expressive measures\nbeyond standard next-symbol entropy and surprisal. While extracting these\nstandard quantities from language models is convenient, we demonstrate that\nusing Monte Carlo simulation to estimate alternative responsive and\nanticipatory measures pays off empirically: New special cases of our\ngeneralized formula exhibit enhanced predictive power compared to surprisal for\nhuman cloze completion probability as well as ELAN, LAN, and N400 amplitudes,\nand greater complementarity with surprisal in predicting reading times.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Measures of Anticipation and Responsivity in Online Language Processing\",\"authors\":\"Mario Giulianelli, Andreas Opedal, Ryan Cotterell\",\"doi\":\"arxiv-2409.10728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a generalization of classic information-theoretic measures of\\npredictive uncertainty in online language processing, based on the simulation\\nof expected continuations of incremental linguistic contexts. Our framework\\nprovides a formal definition of anticipatory and responsive measures, and it\\nequips experimenters with the tools to define new, more expressive measures\\nbeyond standard next-symbol entropy and surprisal. While extracting these\\nstandard quantities from language models is convenient, we demonstrate that\\nusing Monte Carlo simulation to estimate alternative responsive and\\nanticipatory measures pays off empirically: New special cases of our\\ngeneralized formula exhibit enhanced predictive power compared to surprisal for\\nhuman cloze completion probability as well as ELAN, LAN, and N400 amplitudes,\\nand greater complementarity with surprisal in predicting reading times.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们基于对增量语言上下文预期连续性的模拟,对在线语言处理中预测不确定性的经典信息论测量方法进行了概括。我们的框架提供了预测性和反应性测量的正式定义,并为实验人员提供了工具,以定义标准下一符号熵和惊奇度之外新的、更具表现力的测量。虽然从语言模型中提取这些标准量很方便,但我们证明,使用蒙特卡罗模拟来估算其他反应性和预期性量度在实证上是有效的:与惊奇相比,我们的通用公式的新特例在预测人类掐词完成概率、ELAN、LAN 和 N400 振幅方面显示出更强的预测能力,并且在预测阅读时间方面与惊奇有更大的互补性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Measures of Anticipation and Responsivity in Online Language Processing
We introduce a generalization of classic information-theoretic measures of predictive uncertainty in online language processing, based on the simulation of expected continuations of incremental linguistic contexts. Our framework provides a formal definition of anticipatory and responsive measures, and it equips experimenters with the tools to define new, more expressive measures beyond standard next-symbol entropy and surprisal. While extracting these standard quantities from language models is convenient, we demonstrate that using Monte Carlo simulation to estimate alternative responsive and anticipatory measures pays off empirically: New special cases of our generalized formula exhibit enhanced predictive power compared to surprisal for human cloze completion probability as well as ELAN, LAN, and N400 amplitudes, and greater complementarity with surprisal in predicting reading times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信