{"title":"检查管道流动中湍流的发生和衰减情况","authors":"Basheer A. Khan, Shai Arogeti, Alexander Yakhot","doi":"10.1103/physrevfluids.9.093903","DOIUrl":null,"url":null,"abstract":"The crisis (or critical) Reynolds number (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>Re</mtext><mi>c</mi></msub></math>) is established at 1870, describing the threshold beyond which the lifetimes of turbulent puffs prior to the relaminarization extend from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>O</mi><mrow><mo>(</mo><msup><mn>10</mn><mn>4</mn></msup><mo>)</mo></mrow><mspace width=\"0.16em\"></mspace><mtext>to</mtext><mspace width=\"0.16em\"></mspace><mi>O</mi><mrow><mo>(</mo><msup><mn>10</mn><mn>6</mn></msup><mo>)</mo></mrow></mrow></math> time units (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>D</mi><mo>/</mo><msub><mi>U</mi><mi>m</mi></msub></mrow></math>), where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>D</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>U</mi><mi>m</mi></msub></math> denote the pipe diameter and mean velocity, respectively. To analyze the role of inplane motion for sustaining turbulence, fully resolved direct numerical simulations have been performed to generate a localized, equilibrium turbulent puff at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>Re</mtext><mo>=</mo><mn>1920</mn></mrow></math>. Employing our approach based on proper orthogonal decomposition, the research confirms that azimuthal motion significantly contributes to the transition to turbulence. Notably, at supercritical Reynolds numbers (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>Re</mtext><mo>></mo><msub><mtext>Re</mtext><mi>c</mi></msub></mrow></math>) ranging from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>Re</mtext><mo>=</mo><mn>1920</mn></mrow></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>Re</mtext><mo>=</mo><mn>2100</mn></mrow></math>, reducing azimuthal motion energy by 80% substantially shortens the lifetime of turbulent puffs. It has been shown that the relaminarization of turbulent puffs at subcritical Reynolds numbers, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>Re</mtext><mo>=</mo><mn>1720</mn><mtext>–</mtext><mn>1840</mn></mrow></math>, clearly implies an exponential time decay of turbulence energy. The expression for the decay rate was obtained as a best-fit curve of direct numerical simulations.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examination of the onset and decay of turbulence in pipe flow\",\"authors\":\"Basheer A. Khan, Shai Arogeti, Alexander Yakhot\",\"doi\":\"10.1103/physrevfluids.9.093903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crisis (or critical) Reynolds number (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mtext>Re</mtext><mi>c</mi></msub></math>) is established at 1870, describing the threshold beyond which the lifetimes of turbulent puffs prior to the relaminarization extend from <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>O</mi><mrow><mo>(</mo><msup><mn>10</mn><mn>4</mn></msup><mo>)</mo></mrow><mspace width=\\\"0.16em\\\"></mspace><mtext>to</mtext><mspace width=\\\"0.16em\\\"></mspace><mi>O</mi><mrow><mo>(</mo><msup><mn>10</mn><mn>6</mn></msup><mo>)</mo></mrow></mrow></math> time units (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>D</mi><mo>/</mo><msub><mi>U</mi><mi>m</mi></msub></mrow></math>), where <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>D</mi></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>U</mi><mi>m</mi></msub></math> denote the pipe diameter and mean velocity, respectively. To analyze the role of inplane motion for sustaining turbulence, fully resolved direct numerical simulations have been performed to generate a localized, equilibrium turbulent puff at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mtext>Re</mtext><mo>=</mo><mn>1920</mn></mrow></math>. Employing our approach based on proper orthogonal decomposition, the research confirms that azimuthal motion significantly contributes to the transition to turbulence. Notably, at supercritical Reynolds numbers (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mtext>Re</mtext><mo>></mo><msub><mtext>Re</mtext><mi>c</mi></msub></mrow></math>) ranging from <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mtext>Re</mtext><mo>=</mo><mn>1920</mn></mrow></math> to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mtext>Re</mtext><mo>=</mo><mn>2100</mn></mrow></math>, reducing azimuthal motion energy by 80% substantially shortens the lifetime of turbulent puffs. It has been shown that the relaminarization of turbulent puffs at subcritical Reynolds numbers, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mtext>Re</mtext><mo>=</mo><mn>1720</mn><mtext>–</mtext><mn>1840</mn></mrow></math>, clearly implies an exponential time decay of turbulence energy. The expression for the decay rate was obtained as a best-fit curve of direct numerical simulations.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.093903\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.093903","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
摘要
危机(或临界)雷诺数(Rec)确定为 1870,描述了湍流涌在再层流化之前的寿命从 O(104)-O(106) 个时间单位(D/Um)(其中 D 和 Um 分别表示管道直径和平均速度)所超过的临界值。为了分析平面内运动对维持湍流的作用,我们进行了完全解析的直接数值模拟,以产生 Re=1920 的局部平衡湍流泡。采用我们基于适当正交分解的方法,研究证实方位运动对湍流的过渡有显著作用。值得注意的是,在 Re=1920 到 Re=2100 的超临界雷诺数(Re>Rec)范围内,减少 80% 的方位角运动能量会大大缩短湍流泡的寿命。研究表明,在次临界雷诺数(Re=1720-1840)下,湍流泡的再层流化明显意味着湍流能量的指数时间衰减。衰减率的表达式是通过直接数值模拟得到的最佳拟合曲线。
Examination of the onset and decay of turbulence in pipe flow
The crisis (or critical) Reynolds number () is established at 1870, describing the threshold beyond which the lifetimes of turbulent puffs prior to the relaminarization extend from time units (), where and denote the pipe diameter and mean velocity, respectively. To analyze the role of inplane motion for sustaining turbulence, fully resolved direct numerical simulations have been performed to generate a localized, equilibrium turbulent puff at . Employing our approach based on proper orthogonal decomposition, the research confirms that azimuthal motion significantly contributes to the transition to turbulence. Notably, at supercritical Reynolds numbers () ranging from to , reducing azimuthal motion energy by 80% substantially shortens the lifetime of turbulent puffs. It has been shown that the relaminarization of turbulent puffs at subcritical Reynolds numbers, , clearly implies an exponential time decay of turbulence energy. The expression for the decay rate was obtained as a best-fit curve of direct numerical simulations.
期刊介绍:
Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.