用最远点描述一些圆形特性

Arunachala Prasath C, Vamsinadh Thota
{"title":"用最远点描述一些圆形特性","authors":"Arunachala Prasath C, Vamsinadh Thota","doi":"arxiv-2409.08697","DOIUrl":null,"url":null,"abstract":"We characterize rotund, uniformly rotund, locally uniformly rotund and\ncompactly locally uniformly rotund spaces in terms of set of almost farthest\npoints from the unit sphere using the generalized diameter. For this we\nintroduce few notions involving the almost farthest points, namely strongly\nremotal, strongly uniquely remotal and uniformly strongly uniquely remotal\nsets. As a consequence, we obtain some characterizations of the aforementioned\nrotundity properties in terms of existing proximinality notions.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of some rotund properties in terms of farthest points\",\"authors\":\"Arunachala Prasath C, Vamsinadh Thota\",\"doi\":\"arxiv-2409.08697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize rotund, uniformly rotund, locally uniformly rotund and\\ncompactly locally uniformly rotund spaces in terms of set of almost farthest\\npoints from the unit sphere using the generalized diameter. For this we\\nintroduce few notions involving the almost farthest points, namely strongly\\nremotal, strongly uniquely remotal and uniformly strongly uniquely remotal\\nsets. As a consequence, we obtain some characterizations of the aforementioned\\nrotundity properties in terms of existing proximinality notions.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用广义直径,从离单位球面几乎最远点的集合出发,描述了旋转空间、均匀旋转空间、局部均匀旋转空间和紧凑局部均匀旋转空间的特征。为此,我们引入了一些涉及几乎最远点的概念,即强唯一最远点集、强唯一最远点集和均匀强唯一最远点集。因此,我们从现有的近似性概念出发,得到了上述近似性性质的一些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of some rotund properties in terms of farthest points
We characterize rotund, uniformly rotund, locally uniformly rotund and compactly locally uniformly rotund spaces in terms of set of almost farthest points from the unit sphere using the generalized diameter. For this we introduce few notions involving the almost farthest points, namely strongly remotal, strongly uniquely remotal and uniformly strongly uniquely remotal sets. As a consequence, we obtain some characterizations of the aforementioned rotundity properties in terms of existing proximinality notions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信