有限温度下量子材料的弹性模量和热导率

Dylan A. Folker, Zekun Chen, Giuseppe Barbalinardo, Florian Knoop, Davide Donadio
{"title":"有限温度下量子材料的弹性模量和热导率","authors":"Dylan A. Folker, Zekun Chen, Giuseppe Barbalinardo, Florian Knoop, Davide Donadio","doi":"arxiv-2409.09551","DOIUrl":null,"url":null,"abstract":"We describe a theoretical and computational approach to calculate the\nvibrational, elastic, and thermal properties of materials from the\nlow-temperature quantum regime to the high-temperature anharmonic regime. This\napproach is based on anharmonic lattice dynamics and the Boltzmann transport\nequation. It relies on second and third-order force constant tensors estimated\nby fitting temperature-dependent empirical potentials (TDEP) from path-integral\nquantum simulations with a first-principles machine learning Hamiltonian. The\ntemperature-renormalized harmonic force constants are used to calculate the\nelastic moduli and the phonon modes of materials. Harmonic and anharmonic force\nconstants are combined to solve the phonon Boltzmann transport equation to\ncompute the lattice thermal conductivity. We demonstrate the effectiveness of\nthis approach on bulk crystalline silicon in the temperature range from 50 to\n1200~K, showing substantial improvement in the prediction of the temperature\ndependence of the target properties compared to experiments.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic moduli and thermal conductivity of quantum materials at finite temperature\",\"authors\":\"Dylan A. Folker, Zekun Chen, Giuseppe Barbalinardo, Florian Knoop, Davide Donadio\",\"doi\":\"arxiv-2409.09551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a theoretical and computational approach to calculate the\\nvibrational, elastic, and thermal properties of materials from the\\nlow-temperature quantum regime to the high-temperature anharmonic regime. This\\napproach is based on anharmonic lattice dynamics and the Boltzmann transport\\nequation. It relies on second and third-order force constant tensors estimated\\nby fitting temperature-dependent empirical potentials (TDEP) from path-integral\\nquantum simulations with a first-principles machine learning Hamiltonian. The\\ntemperature-renormalized harmonic force constants are used to calculate the\\nelastic moduli and the phonon modes of materials. Harmonic and anharmonic force\\nconstants are combined to solve the phonon Boltzmann transport equation to\\ncompute the lattice thermal conductivity. We demonstrate the effectiveness of\\nthis approach on bulk crystalline silicon in the temperature range from 50 to\\n1200~K, showing substantial improvement in the prediction of the temperature\\ndependence of the target properties compared to experiments.\",\"PeriodicalId\":501234,\"journal\":{\"name\":\"arXiv - PHYS - Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种理论和计算方法,用于计算材料从低温量子态到高温非谐波态的振动、弹性和热特性。这种方法基于非谐波晶格动力学和玻尔兹曼传输方程。它依赖于二阶和三阶力常量张量,通过将路径积分量子模拟的温度相关经验势(TDEP)与第一原理机器学习哈密顿拟合来估算。温度归一化谐波力常数用于计算材料的弹性模量和声子模式。结合谐波和非谐波力常数来求解声子波尔兹曼输运方程,从而计算晶格热导率。我们在 50~1200~K 温度范围内的块状晶体硅上演示了这种方法的有效性,结果表明,与实验相比,对目标特性的温度依赖性的预测有了很大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elastic moduli and thermal conductivity of quantum materials at finite temperature
We describe a theoretical and computational approach to calculate the vibrational, elastic, and thermal properties of materials from the low-temperature quantum regime to the high-temperature anharmonic regime. This approach is based on anharmonic lattice dynamics and the Boltzmann transport equation. It relies on second and third-order force constant tensors estimated by fitting temperature-dependent empirical potentials (TDEP) from path-integral quantum simulations with a first-principles machine learning Hamiltonian. The temperature-renormalized harmonic force constants are used to calculate the elastic moduli and the phonon modes of materials. Harmonic and anharmonic force constants are combined to solve the phonon Boltzmann transport equation to compute the lattice thermal conductivity. We demonstrate the effectiveness of this approach on bulk crystalline silicon in the temperature range from 50 to 1200~K, showing substantial improvement in the prediction of the temperature dependence of the target properties compared to experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信