晶体 CsCu$_4$Se$_3$ 中的高阶非谐波散射和宽温域玻璃态热传输

Jincheng Yue, Yanhui Liu, Jiongzhi Zheng
{"title":"晶体 CsCu$_4$Se$_3$ 中的高阶非谐波散射和宽温域玻璃态热传输","authors":"Jincheng Yue, Yanhui Liu, Jiongzhi Zheng","doi":"arxiv-2409.09594","DOIUrl":null,"url":null,"abstract":"Understanding lattice dynamics and thermal transport in crystalline compounds\nwith intrinsically low lattice thermal conductivity ($\\kappa_L$) is crucial in\ncondensed matter physics. In this work, we investigate the lattice thermal\nconductivity of crystalline CsCu$_4$Se$_3$ by coupling first-principles\nanharmonic lattice dynamics with a unified theory of thermal transport. We\nconsider the effects of both cubic and quartic anharmonicity on phonon\nscattering and energy shifts, as well as the diagonal and off-diagonal terms of\nheat flux operators. Our results reveal that the vibrational properties of\nCsCu$_4$Se$_3$ are characterized by strong anharmonicity and wave-like phonon\ntunneling. In particular, the strong three- and four-phonon scattering induced\nby Cu atoms significantly suppresses particle-like propagation while enhancing\nwave-like tunneling. Moreover, the coherence-driven conductivity dominates the\ntotal thermal conductivity along the $z$-axis, leading to an anomalous,\nwide-temperature-range (100-700 K) glassy-like thermal transport. Importantly,\nthe significant coherence contribution, resulting from the coupling of distinct\nvibrational eigenstates, facilitates efficient thermal transport across layers,\nsharply contrasting with traditional layered materials. Finally, we established\na criterion linking anharmonic scattering to the frequency differences between\neigenstates, which effectively explains the non-monotonic temperature\ndependence of coherence thermal conductivity. Our work not only reveals the\nimpact of higher-order anharmonic self-energies in crystalline CsCu$_4$Se$_3$,\nbut also examines the dynamic evolution of wave-like thermal conductivity,\nproviding insights into the microscopic mechanisms driving anomalous heat\ntransport.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-order Anharmonic Scattering and Wide-Temperature-Range Glassy Thermal Transport in Crystalline CsCu$_4$Se$_3$\",\"authors\":\"Jincheng Yue, Yanhui Liu, Jiongzhi Zheng\",\"doi\":\"arxiv-2409.09594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding lattice dynamics and thermal transport in crystalline compounds\\nwith intrinsically low lattice thermal conductivity ($\\\\kappa_L$) is crucial in\\ncondensed matter physics. In this work, we investigate the lattice thermal\\nconductivity of crystalline CsCu$_4$Se$_3$ by coupling first-principles\\nanharmonic lattice dynamics with a unified theory of thermal transport. We\\nconsider the effects of both cubic and quartic anharmonicity on phonon\\nscattering and energy shifts, as well as the diagonal and off-diagonal terms of\\nheat flux operators. Our results reveal that the vibrational properties of\\nCsCu$_4$Se$_3$ are characterized by strong anharmonicity and wave-like phonon\\ntunneling. In particular, the strong three- and four-phonon scattering induced\\nby Cu atoms significantly suppresses particle-like propagation while enhancing\\nwave-like tunneling. Moreover, the coherence-driven conductivity dominates the\\ntotal thermal conductivity along the $z$-axis, leading to an anomalous,\\nwide-temperature-range (100-700 K) glassy-like thermal transport. Importantly,\\nthe significant coherence contribution, resulting from the coupling of distinct\\nvibrational eigenstates, facilitates efficient thermal transport across layers,\\nsharply contrasting with traditional layered materials. Finally, we established\\na criterion linking anharmonic scattering to the frequency differences between\\neigenstates, which effectively explains the non-monotonic temperature\\ndependence of coherence thermal conductivity. Our work not only reveals the\\nimpact of higher-order anharmonic self-energies in crystalline CsCu$_4$Se$_3$,\\nbut also examines the dynamic evolution of wave-like thermal conductivity,\\nproviding insights into the microscopic mechanisms driving anomalous heat\\ntransport.\",\"PeriodicalId\":501234,\"journal\":{\"name\":\"arXiv - PHYS - Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

理解具有固有低晶格热导率($\kappa_L$)的晶体化合物的晶格动力学和热传输是凝聚态物理学的关键。在这项工作中,我们通过将第一原理-谐波晶格动力学与热传输统一理论相结合,研究了晶体铯钴元_4元硒元_3元的晶格热导率。我们考虑了三次和四次非谐波对声子散射和能量移动的影响,以及热通量算子的对角和非对角项。我们的研究结果表明,CsCu$_4$Se$_3$ 的振动特性具有强非谐性和波状声道的特点。特别是,铜原子诱导的强三声子和四声子散射显著抑制了粒子样传播,同时增强了波样隧穿。此外,相干驱动的电导率在沿 $z$ 轴的总热导率中占主导地位,从而导致一种反常的、宽温度范围(100-700 K)的玻璃状热传输。重要的是,不同振动特征状态的耦合产生了巨大的相干性贡献,促进了高效的跨层热传输,这与传统的层状材料形成了鲜明对比。最后,我们建立了一个标准,将非谐波散射与本征态之间的频率差异联系起来,从而有效解释了相干热导率的非单调温度依赖性。我们的研究工作不仅揭示了晶体 CsCu$_4$Se$_3$ 中高阶非谐波自能的影响,还研究了波状热导率的动态演化,为揭示驱动异常热传递的微观机制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-order Anharmonic Scattering and Wide-Temperature-Range Glassy Thermal Transport in Crystalline CsCu$_4$Se$_3$
Understanding lattice dynamics and thermal transport in crystalline compounds with intrinsically low lattice thermal conductivity ($\kappa_L$) is crucial in condensed matter physics. In this work, we investigate the lattice thermal conductivity of crystalline CsCu$_4$Se$_3$ by coupling first-principles anharmonic lattice dynamics with a unified theory of thermal transport. We consider the effects of both cubic and quartic anharmonicity on phonon scattering and energy shifts, as well as the diagonal and off-diagonal terms of heat flux operators. Our results reveal that the vibrational properties of CsCu$_4$Se$_3$ are characterized by strong anharmonicity and wave-like phonon tunneling. In particular, the strong three- and four-phonon scattering induced by Cu atoms significantly suppresses particle-like propagation while enhancing wave-like tunneling. Moreover, the coherence-driven conductivity dominates the total thermal conductivity along the $z$-axis, leading to an anomalous, wide-temperature-range (100-700 K) glassy-like thermal transport. Importantly, the significant coherence contribution, resulting from the coupling of distinct vibrational eigenstates, facilitates efficient thermal transport across layers, sharply contrasting with traditional layered materials. Finally, we established a criterion linking anharmonic scattering to the frequency differences between eigenstates, which effectively explains the non-monotonic temperature dependence of coherence thermal conductivity. Our work not only reveals the impact of higher-order anharmonic self-energies in crystalline CsCu$_4$Se$_3$, but also examines the dynamic evolution of wave-like thermal conductivity, providing insights into the microscopic mechanisms driving anomalous heat transport.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信