原位偏压下铁电氧化铪锆纳米晶体的结构演化路径

Yunzhe Zheng, Heng Yu, Tianjiao Xin, Kan-Hao Xue, Yilin Xu, Zhaomeng Gao, Cheng Liu, Qiwendong Zhao, Yonghui Zheng, Xiangshui Miao, Yan Cheng
{"title":"原位偏压下铁电氧化铪锆纳米晶体的结构演化路径","authors":"Yunzhe Zheng, Heng Yu, Tianjiao Xin, Kan-Hao Xue, Yilin Xu, Zhaomeng Gao, Cheng Liu, Qiwendong Zhao, Yonghui Zheng, Xiangshui Miao, Yan Cheng","doi":"arxiv-2409.11217","DOIUrl":null,"url":null,"abstract":"Fluorite-type $\\mathrm{HfO_2}$-based ferroelectric (FE) oxides have rekindled\ninterest in FE memories due to their compatibility with silicon processing and\npotential for high-density integration. The polarization characteristics of FE\ndevices are governed by the dynamics of metastable domain structure evolution.\nInsightful design of FE devices for encoding and storage necessitates a\ncomprehensive understanding of the internal structural evolution. Here, we\ndemonstrate the evolution of domain structures through a transient polar\northorhombic (O)-$Pmn2_1$-like configuration via $in$-$situ$ biasing on\n$\\mathrm{TiN/Hf_{0.5}Zr_{0.5}O_2/TiN}$ capacitors within spherical\naberration-corrected transmission electron microscope, combined with\ntheoretical calculations. Furthermore, it is directly evidenced that the non-FE\nO-$Pbca$ transforms into the FE O-$Pca2_1$ phase under electric field, with the\npolar axis of the FE-phase aligning towards the bias direction through\nferroelastic transformation, thereby enhancing FE polarization. As cycling\nprogresses further, however, the polar axis collapses, leading to FE\ndegradation. These novel insights into the intricate structural evolution path\nunder electrical field cycling facilitate optimization and design strategies\nfor $\\mathrm{HfO_2}$-based FE memory devices.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure evolution path of ferroelectric hafnium zirconium oxide nanocrystals under in-situ biasing\",\"authors\":\"Yunzhe Zheng, Heng Yu, Tianjiao Xin, Kan-Hao Xue, Yilin Xu, Zhaomeng Gao, Cheng Liu, Qiwendong Zhao, Yonghui Zheng, Xiangshui Miao, Yan Cheng\",\"doi\":\"arxiv-2409.11217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorite-type $\\\\mathrm{HfO_2}$-based ferroelectric (FE) oxides have rekindled\\ninterest in FE memories due to their compatibility with silicon processing and\\npotential for high-density integration. The polarization characteristics of FE\\ndevices are governed by the dynamics of metastable domain structure evolution.\\nInsightful design of FE devices for encoding and storage necessitates a\\ncomprehensive understanding of the internal structural evolution. Here, we\\ndemonstrate the evolution of domain structures through a transient polar\\northorhombic (O)-$Pmn2_1$-like configuration via $in$-$situ$ biasing on\\n$\\\\mathrm{TiN/Hf_{0.5}Zr_{0.5}O_2/TiN}$ capacitors within spherical\\naberration-corrected transmission electron microscope, combined with\\ntheoretical calculations. Furthermore, it is directly evidenced that the non-FE\\nO-$Pbca$ transforms into the FE O-$Pca2_1$ phase under electric field, with the\\npolar axis of the FE-phase aligning towards the bias direction through\\nferroelastic transformation, thereby enhancing FE polarization. As cycling\\nprogresses further, however, the polar axis collapses, leading to FE\\ndegradation. These novel insights into the intricate structural evolution path\\nunder electrical field cycling facilitate optimization and design strategies\\nfor $\\\\mathrm{HfO_2}$-based FE memory devices.\",\"PeriodicalId\":501234,\"journal\":{\"name\":\"arXiv - PHYS - Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于萤石型 $\mathrm{HfO_2}$ 的铁电(FE)氧化物重新点燃了人们对 FE 存储器的兴趣,因为它们与硅加工兼容并具有高密度集成的潜力。FE 器件的极化特性受制于可迁移畴结构的动态演化。在这里,我们通过在球面偏差校正透射电子显微镜下对$\mathrm{TiN/Hf_{0.5}Zr_{0.5}O_2/TiN}$电容器进行$in$$-$situ$偏压,并结合理论计算,展示了通过瞬态极性正交(O)-$Pmn2_1$类构型实现的畴结构演化。此外,研究还直接证明,在电场作用下,非 FEO-$Pbca$ 转变为 FE O-$Pca2_1$ 相,通过铁弹性转变,FE 相的极轴朝向偏压方向,从而增强了 FE 极化。然而,随着循环的进一步进行,极轴塌陷,导致 FE 退化。这些关于电场循环下复杂结构演变路径的新见解有助于基于 $\mathrm{HfO_2}$ 的 FE 存储器件的优化和设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure evolution path of ferroelectric hafnium zirconium oxide nanocrystals under in-situ biasing
Fluorite-type $\mathrm{HfO_2}$-based ferroelectric (FE) oxides have rekindled interest in FE memories due to their compatibility with silicon processing and potential for high-density integration. The polarization characteristics of FE devices are governed by the dynamics of metastable domain structure evolution. Insightful design of FE devices for encoding and storage necessitates a comprehensive understanding of the internal structural evolution. Here, we demonstrate the evolution of domain structures through a transient polar orthorhombic (O)-$Pmn2_1$-like configuration via $in$-$situ$ biasing on $\mathrm{TiN/Hf_{0.5}Zr_{0.5}O_2/TiN}$ capacitors within spherical aberration-corrected transmission electron microscope, combined with theoretical calculations. Furthermore, it is directly evidenced that the non-FE O-$Pbca$ transforms into the FE O-$Pca2_1$ phase under electric field, with the polar axis of the FE-phase aligning towards the bias direction through ferroelastic transformation, thereby enhancing FE polarization. As cycling progresses further, however, the polar axis collapses, leading to FE degradation. These novel insights into the intricate structural evolution path under electrical field cycling facilitate optimization and design strategies for $\mathrm{HfO_2}$-based FE memory devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信