拓扑绝缘体 Bi$_x$Sb$_{1-x}$ 接近二维极限的杂化间隙

Paul Corbae, Aaron N. Engel, Jason T. Dong, Wilson J. Yánez-Parreño, Donghui Lu, Makoto Hashimoto, Alexei Fedorov, Christopher J. Palmstrøm
{"title":"拓扑绝缘体 Bi$_x$Sb$_{1-x}$ 接近二维极限的杂化间隙","authors":"Paul Corbae, Aaron N. Engel, Jason T. Dong, Wilson J. Yánez-Parreño, Donghui Lu, Makoto Hashimoto, Alexei Fedorov, Christopher J. Palmstrøm","doi":"arxiv-2409.11705","DOIUrl":null,"url":null,"abstract":"Bismuth antimony alloys (Bi$_x$Sb$_{1-x}$) provide a tuneable materials\nplatform to study topological transport and spin-polarized surface states\nresulting from the nontrivial bulk electronic structure. In the two-dimensional\nlimit, it is a suitable system to study the quantum spin Hall effect. In this\nwork we grow epitaxial, single orientation thin films of Bi$_x$Sb$_{1-x}$ on an\nInSb(111)B substrate down to two bilayers where hybridization effects should\ngap out the topological surface states. Supported by a tight-binding model,\nspin- and angle-resolved photoemission spectroscopy data shows pockets at the\nFermi level from the topological surface states disappear as the bulk gap\nincreases from confinement. Evidence for a gap opening in the topological\nsurface states is shown in the ultrathin limit. Finally, we observe\nspin-polarization approaching unity from the topological surface states in 10\nbilayer films. The growth and characterization of ultrathin Bi$_x$Sb$_{1-x}$\nalloys suggest ultrathin films of this material system can be used to study\ntwo-dimensional topological physics as well as applications such as topological\ndevices, low power electronics, and spintronics.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$\",\"authors\":\"Paul Corbae, Aaron N. Engel, Jason T. Dong, Wilson J. Yánez-Parreño, Donghui Lu, Makoto Hashimoto, Alexei Fedorov, Christopher J. Palmstrøm\",\"doi\":\"arxiv-2409.11705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bismuth antimony alloys (Bi$_x$Sb$_{1-x}$) provide a tuneable materials\\nplatform to study topological transport and spin-polarized surface states\\nresulting from the nontrivial bulk electronic structure. In the two-dimensional\\nlimit, it is a suitable system to study the quantum spin Hall effect. In this\\nwork we grow epitaxial, single orientation thin films of Bi$_x$Sb$_{1-x}$ on an\\nInSb(111)B substrate down to two bilayers where hybridization effects should\\ngap out the topological surface states. Supported by a tight-binding model,\\nspin- and angle-resolved photoemission spectroscopy data shows pockets at the\\nFermi level from the topological surface states disappear as the bulk gap\\nincreases from confinement. Evidence for a gap opening in the topological\\nsurface states is shown in the ultrathin limit. Finally, we observe\\nspin-polarization approaching unity from the topological surface states in 10\\nbilayer films. The growth and characterization of ultrathin Bi$_x$Sb$_{1-x}$\\nalloys suggest ultrathin films of this material system can be used to study\\ntwo-dimensional topological physics as well as applications such as topological\\ndevices, low power electronics, and spintronics.\",\"PeriodicalId\":501234,\"journal\":{\"name\":\"arXiv - PHYS - Materials Science\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铋锑合金(Bi$_x$Sb$_{1-x}$)提供了一个可调整的材料平台,用于研究由非难体电子结构引起的拓扑输运和自旋极化表面态。在二维极限下,它是研究量子自旋霍尔效应的合适体系。在这项研究中,我们在 InSb(111)B 衬底上生长出 Bi$_x$Sb$_{1-x}$的外延单取向薄膜,直至两个双层膜,在这两个双层膜中,杂化效应会使拓扑表面态发生隙化。在紧密结合模型的支持下,自旋和角度分辨光发射光谱数据显示,拓扑表面态的费米级口袋随着束缚间隙的增大而消失。在超薄极限中,拓扑表面态的间隙开口也得到了证明。最后,我们在 10 层薄膜中观察到拓扑表面态的引脚极化接近统一。超薄 Bi$_x$Sb$_{1-x}$ 合金的生长和表征表明,这种材料体系的超薄薄膜可用于研究二维拓扑物理以及拓扑器件、低功率电子学和自旋电子学等应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$
Bismuth antimony alloys (Bi$_x$Sb$_{1-x}$) provide a tuneable materials platform to study topological transport and spin-polarized surface states resulting from the nontrivial bulk electronic structure. In the two-dimensional limit, it is a suitable system to study the quantum spin Hall effect. In this work we grow epitaxial, single orientation thin films of Bi$_x$Sb$_{1-x}$ on an InSb(111)B substrate down to two bilayers where hybridization effects should gap out the topological surface states. Supported by a tight-binding model, spin- and angle-resolved photoemission spectroscopy data shows pockets at the Fermi level from the topological surface states disappear as the bulk gap increases from confinement. Evidence for a gap opening in the topological surface states is shown in the ultrathin limit. Finally, we observe spin-polarization approaching unity from the topological surface states in 10 bilayer films. The growth and characterization of ultrathin Bi$_x$Sb$_{1-x}$ alloys suggest ultrathin films of this material system can be used to study two-dimensional topological physics as well as applications such as topological devices, low power electronics, and spintronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信