A. Yu. Kravtsova, D. V. Kulikov, D. A. Lanshakov, M. V. Kashkarova, S. V. Dvoinishnikov
{"title":"狭缝中气蚀水翼的激光多普勒风速测量法","authors":"A. Yu. Kravtsova, D. V. Kulikov, D. A. Lanshakov, M. V. Kashkarova, S. V. Dvoinishnikov","doi":"10.1134/S1810232824030160","DOIUrl":null,"url":null,"abstract":"<p>Laser Doppler anemometry (LDA) is one of the main non-contact methods for measuring the velocity characteristics of flows and pressure pulsations. Determining the quantitative patterns of the flow of multiphase liquids in small-sized channels is known to be a difficult task. The authors demonstrate the eventual use of LDA to study cavitation flows in slits with a height of 1.2 mm. The cavitation flow is created by means of the NACA0012 hydrofoil. The experimental equipment is positioned using a micro-displacement device. The distortion of the luminous flux through the channel walls is taken into account. This paper presents an algorithm for searching the central region of the slit. A method for filtering noise effects is described. The results of measuring the average flow velocity near the cavitating hydrofoil in the slit are provided in the article.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 3","pages":"646 - 651"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser Doppler Anemometry of Cavitating Hydrofoil in a Slit\",\"authors\":\"A. Yu. Kravtsova, D. V. Kulikov, D. A. Lanshakov, M. V. Kashkarova, S. V. Dvoinishnikov\",\"doi\":\"10.1134/S1810232824030160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laser Doppler anemometry (LDA) is one of the main non-contact methods for measuring the velocity characteristics of flows and pressure pulsations. Determining the quantitative patterns of the flow of multiphase liquids in small-sized channels is known to be a difficult task. The authors demonstrate the eventual use of LDA to study cavitation flows in slits with a height of 1.2 mm. The cavitation flow is created by means of the NACA0012 hydrofoil. The experimental equipment is positioned using a micro-displacement device. The distortion of the luminous flux through the channel walls is taken into account. This paper presents an algorithm for searching the central region of the slit. A method for filtering noise effects is described. The results of measuring the average flow velocity near the cavitating hydrofoil in the slit are provided in the article.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"33 3\",\"pages\":\"646 - 651\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232824030160\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824030160","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Laser Doppler Anemometry of Cavitating Hydrofoil in a Slit
Laser Doppler anemometry (LDA) is one of the main non-contact methods for measuring the velocity characteristics of flows and pressure pulsations. Determining the quantitative patterns of the flow of multiphase liquids in small-sized channels is known to be a difficult task. The authors demonstrate the eventual use of LDA to study cavitation flows in slits with a height of 1.2 mm. The cavitation flow is created by means of the NACA0012 hydrofoil. The experimental equipment is positioned using a micro-displacement device. The distortion of the luminous flux through the channel walls is taken into account. This paper presents an algorithm for searching the central region of the slit. A method for filtering noise effects is described. The results of measuring the average flow velocity near the cavitating hydrofoil in the slit are provided in the article.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.