一般点和非常一般点的德梅利猜想

Sankhaneel Bisui, Dipendranath Mahato
{"title":"一般点和非常一般点的德梅利猜想","authors":"Sankhaneel Bisui, Dipendranath Mahato","doi":"arxiv-2409.08535","DOIUrl":null,"url":null,"abstract":"We prove that at least $\\left( \\dfrac{(1+\\epsilon)2m}{N-1}+1+\\epsilon\n\\right)^N$, where $0\\leqslant \\epsilon <1$, many general points, satisfy\nDemailly's conjecture. Previously, it was known to be true for at least\n$(2m+2)^N$ many general points in arxiv.org/abs/2009.05022. We also study\nDemailly's conjecture for $m=3$ for ideal defining general and very general\npoints.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demailly's Conjecture for general and very general points\",\"authors\":\"Sankhaneel Bisui, Dipendranath Mahato\",\"doi\":\"arxiv-2409.08535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that at least $\\\\left( \\\\dfrac{(1+\\\\epsilon)2m}{N-1}+1+\\\\epsilon\\n\\\\right)^N$, where $0\\\\leqslant \\\\epsilon <1$, many general points, satisfy\\nDemailly's conjecture. Previously, it was known to be true for at least\\n$(2m+2)^N$ many general points in arxiv.org/abs/2009.05022. We also study\\nDemailly's conjecture for $m=3$ for ideal defining general and very general\\npoints.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明至少$\left( \dfrac{(1+\epsilon)2m}{N-1}+1+\epsilon/right)^N$,其中$0\leqslant \epsilon<1$,许多一般点,满足德梅里猜想。在此之前,arxiv.org/abs/2009.05022 已知该猜想至少对$(2m+2)^N$ 个一般点成立。我们还研究了 $m=3$ 理想定义一般点和非常一般点的德梅里猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demailly's Conjecture for general and very general points
We prove that at least $\left( \dfrac{(1+\epsilon)2m}{N-1}+1+\epsilon \right)^N$, where $0\leqslant \epsilon <1$, many general points, satisfy Demailly's conjecture. Previously, it was known to be true for at least $(2m+2)^N$ many general points in arxiv.org/abs/2009.05022. We also study Demailly's conjecture for $m=3$ for ideal defining general and very general points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信