李公设、同质公设和子场公设的麦克威廉斯类型同一性的存在性

Jessica Bariffi, Giulia Cavicchioni, Violetta Weger
{"title":"李公设、同质公设和子场公设的麦克威廉斯类型同一性的存在性","authors":"Jessica Bariffi, Giulia Cavicchioni, Violetta Weger","doi":"arxiv-2409.11926","DOIUrl":null,"url":null,"abstract":"Famous results state that the classical MacWilliams identities fail for the\nLee metric, the homogeneous metric and for the subfield metric, apart from some\ntrivial cases. In this paper we change the classical idea of enumerating the\ncodewords of the same weight and choose a finer way of partitioning the code\nthat still contains all the information of the weight enumerator of the code.\nThe considered decomposition allows for MacWilliams-type identities which hold\nfor any additive weight over a finite chain ring. For the specific cases of the\nhomogeneous and the subfield metric we then define a coarser partition for\nwhich the MacWilliams-type identities still hold. This result shows that one\ncan, in fact, relate the code and the dual code in terms of their weights, even\nfor these metrics. Finally, we derive Linear Programming bounds stemming from\nthe MacWilliams-type identities presented.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"212 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Existence of MacWilliams-Type Identities for the Lee, Homogeneous and Subfield Metric\",\"authors\":\"Jessica Bariffi, Giulia Cavicchioni, Violetta Weger\",\"doi\":\"arxiv-2409.11926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Famous results state that the classical MacWilliams identities fail for the\\nLee metric, the homogeneous metric and for the subfield metric, apart from some\\ntrivial cases. In this paper we change the classical idea of enumerating the\\ncodewords of the same weight and choose a finer way of partitioning the code\\nthat still contains all the information of the weight enumerator of the code.\\nThe considered decomposition allows for MacWilliams-type identities which hold\\nfor any additive weight over a finite chain ring. For the specific cases of the\\nhomogeneous and the subfield metric we then define a coarser partition for\\nwhich the MacWilliams-type identities still hold. This result shows that one\\ncan, in fact, relate the code and the dual code in terms of their weights, even\\nfor these metrics. Finally, we derive Linear Programming bounds stemming from\\nthe MacWilliams-type identities presented.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"212 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

著名的结果表明,除了某些微不足道的情况外,经典的麦克威廉斯特性对于李度量、同质度量和子场度量都是失效的。在本文中,我们改变了枚举相同权重的编码的经典思想,选择了一种更精细的编码划分方法,这种方法仍然包含编码的权重枚举器的所有信息。对于同域和子域度量的特殊情况,我们定义了一种更粗糙的分解,其麦克威廉斯类型的同值定理仍然成立。这一结果表明,即使对于这些度量,我们实际上也可以用它们的权重将代码和对偶代码联系起来。最后,我们从所提出的 MacWilliams 型等式推导出线性规划边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Existence of MacWilliams-Type Identities for the Lee, Homogeneous and Subfield Metric
Famous results state that the classical MacWilliams identities fail for the Lee metric, the homogeneous metric and for the subfield metric, apart from some trivial cases. In this paper we change the classical idea of enumerating the codewords of the same weight and choose a finer way of partitioning the code that still contains all the information of the weight enumerator of the code. The considered decomposition allows for MacWilliams-type identities which hold for any additive weight over a finite chain ring. For the specific cases of the homogeneous and the subfield metric we then define a coarser partition for which the MacWilliams-type identities still hold. This result shows that one can, in fact, relate the code and the dual code in terms of their weights, even for these metrics. Finally, we derive Linear Programming bounds stemming from the MacWilliams-type identities presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信