改进斯坦因变分梯度下降的有限粒子收敛速率

Krishnakumar Balasubramanian, Sayan Banerjee, Promit Ghosal
{"title":"改进斯坦因变分梯度下降的有限粒子收敛速率","authors":"Krishnakumar Balasubramanian, Sayan Banerjee, Promit Ghosal","doi":"arxiv-2409.08469","DOIUrl":null,"url":null,"abstract":"We provide finite-particle convergence rates for the Stein Variational\nGradient Descent (SVGD) algorithm in the Kernel Stein Discrepancy\n($\\mathsf{KSD}$) and Wasserstein-2 metrics. Our key insight is the observation\nthat the time derivative of the relative entropy between the joint density of\n$N$ particle locations and the $N$-fold product target measure, starting from a\nregular initial distribution, splits into a dominant `negative part'\nproportional to $N$ times the expected $\\mathsf{KSD}^2$ and a smaller `positive\npart'. This observation leads to $\\mathsf{KSD}$ rates of order $1/\\sqrt{N}$,\nproviding a near optimal double exponential improvement over the recent result\nby~\\cite{shi2024finite}. Under mild assumptions on the kernel and potential,\nthese bounds also grow linearly in the dimension $d$. By adding a bilinear\ncomponent to the kernel, the above approach is used to further obtain\nWasserstein-2 convergence. For the case of `bilinear + Mat\\'ern' kernels, we\nderive Wasserstein-2 rates that exhibit a curse-of-dimensionality similar to\nthe i.i.d. setting. We also obtain marginal convergence and long-time\npropagation of chaos results for the time-averaged particle laws.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Finite-Particle Convergence Rates for Stein Variational Gradient Descent\",\"authors\":\"Krishnakumar Balasubramanian, Sayan Banerjee, Promit Ghosal\",\"doi\":\"arxiv-2409.08469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide finite-particle convergence rates for the Stein Variational\\nGradient Descent (SVGD) algorithm in the Kernel Stein Discrepancy\\n($\\\\mathsf{KSD}$) and Wasserstein-2 metrics. Our key insight is the observation\\nthat the time derivative of the relative entropy between the joint density of\\n$N$ particle locations and the $N$-fold product target measure, starting from a\\nregular initial distribution, splits into a dominant `negative part'\\nproportional to $N$ times the expected $\\\\mathsf{KSD}^2$ and a smaller `positive\\npart'. This observation leads to $\\\\mathsf{KSD}$ rates of order $1/\\\\sqrt{N}$,\\nproviding a near optimal double exponential improvement over the recent result\\nby~\\\\cite{shi2024finite}. Under mild assumptions on the kernel and potential,\\nthese bounds also grow linearly in the dimension $d$. By adding a bilinear\\ncomponent to the kernel, the above approach is used to further obtain\\nWasserstein-2 convergence. For the case of `bilinear + Mat\\\\'ern' kernels, we\\nderive Wasserstein-2 rates that exhibit a curse-of-dimensionality similar to\\nthe i.i.d. setting. We also obtain marginal convergence and long-time\\npropagation of chaos results for the time-averaged particle laws.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为核斯坦因差异($mathsf{KSD}$)和瓦瑟斯坦-2度量中的斯坦因变分梯度下降(SVGD)算法提供了有限粒子收敛率。我们的主要见解是观察到,从正态初始分布开始,N$粒子位置的联合密度与N$折积目标度量之间的相对熵的时间导数会分裂成一个占主导地位的 "负部分"(与预期的$\mathsf{KSD}^2$的N$倍成正比)和一个较小的 "正部分"。这一观察结果使 $\mathsf{KSD}$ 率达到 1/sqrt{N}$ 的数量级,与最近由~\cite{shi2024finite}得出的结果相比,提供了近乎最佳的双指数改进。在内核和势的温和假设下,这些边界在维数$d$上也呈线性增长。通过在内核中加入双线性分量,上述方法被用来进一步获得瓦瑟斯坦-2 收敛性。对于 "双线性 + Mat\'ern' 内核 "的情况,我们得到的 Wasserstein-2 率表现出类似于 i.i.d. 设置的维度诅咒。我们还得到了时间平均粒子定律的边际收敛性和长时间传播的混沌结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Finite-Particle Convergence Rates for Stein Variational Gradient Descent
We provide finite-particle convergence rates for the Stein Variational Gradient Descent (SVGD) algorithm in the Kernel Stein Discrepancy ($\mathsf{KSD}$) and Wasserstein-2 metrics. Our key insight is the observation that the time derivative of the relative entropy between the joint density of $N$ particle locations and the $N$-fold product target measure, starting from a regular initial distribution, splits into a dominant `negative part' proportional to $N$ times the expected $\mathsf{KSD}^2$ and a smaller `positive part'. This observation leads to $\mathsf{KSD}$ rates of order $1/\sqrt{N}$, providing a near optimal double exponential improvement over the recent result by~\cite{shi2024finite}. Under mild assumptions on the kernel and potential, these bounds also grow linearly in the dimension $d$. By adding a bilinear component to the kernel, the above approach is used to further obtain Wasserstein-2 convergence. For the case of `bilinear + Mat\'ern' kernels, we derive Wasserstein-2 rates that exhibit a curse-of-dimensionality similar to the i.i.d. setting. We also obtain marginal convergence and long-time propagation of chaos results for the time-averaged particle laws.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信