{"title":"在 \\(\\mathbb{R}^{N}\\) 中分数 \\(p(x,\\cdot )\\)-Kirchhoff-type 方程的解决方案","authors":"Lili Wan","doi":"10.1186/s13660-024-03204-3","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the fractional $p(x,\\cdot )$ -Kirchhoff-type equations $$ M\\left (\\int _{\\mathbb{R}^{N}\\times \\mathbb{R}^{N}} \\frac{1}{p(x,y)} \\frac{|u(x)-u(y)|^{p(x,y)}}{|x-y|^{N+sp(x,y)}}dxdy\\right )(-\\Delta _{p(x,.)})^{s} u+|u|^{\\bar{p}(x)-2}u=f(x,u).$$ We weaken the conditions on the nonlinear term f and get the existence and multiplicity of solutions via variational methods, which improves some previous results.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"104 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions for fractional \\\\(p(x,\\\\cdot )\\\\)-Kirchhoff-type equations in \\\\(\\\\mathbb{R}^{N}\\\\)\",\"authors\":\"Lili Wan\",\"doi\":\"10.1186/s13660-024-03204-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the fractional $p(x,\\\\cdot )$ -Kirchhoff-type equations $$ M\\\\left (\\\\int _{\\\\mathbb{R}^{N}\\\\times \\\\mathbb{R}^{N}} \\\\frac{1}{p(x,y)} \\\\frac{|u(x)-u(y)|^{p(x,y)}}{|x-y|^{N+sp(x,y)}}dxdy\\\\right )(-\\\\Delta _{p(x,.)})^{s} u+|u|^{\\\\bar{p}(x)-2}u=f(x,u).$$ We weaken the conditions on the nonlinear term f and get the existence and multiplicity of solutions via variational methods, which improves some previous results.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03204-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03204-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Solutions for fractional \(p(x,\cdot )\)-Kirchhoff-type equations in \(\mathbb{R}^{N}\)
In this paper, we discuss the fractional $p(x,\cdot )$ -Kirchhoff-type equations $$ M\left (\int _{\mathbb{R}^{N}\times \mathbb{R}^{N}} \frac{1}{p(x,y)} \frac{|u(x)-u(y)|^{p(x,y)}}{|x-y|^{N+sp(x,y)}}dxdy\right )(-\Delta _{p(x,.)})^{s} u+|u|^{\bar{p}(x)-2}u=f(x,u).$$ We weaken the conditions on the nonlinear term f and get the existence and multiplicity of solutions via variational methods, which improves some previous results.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.