(全息不相溶二元超流体中共生涡旋-亮孤子的(不)稳定性

Yuping An, Li Li
{"title":"(全息不相溶二元超流体中共生涡旋-亮孤子的(不)稳定性","authors":"Yuping An, Li Li","doi":"arxiv-2409.08310","DOIUrl":null,"url":null,"abstract":"Symbiotic vortex-bright soliton structures with non-trivial topological\ncharge in one component are found to be robust in immiscibel two-component\nsuperfluids, due to the effective potential created by a stable vortex in the\nother component. We explore the properties of symbiotic vortex-bright soliton\nin strongly coupled binary superfluids by holography, which naturally\nincorporates finite temperature effect and dissipation. We show the dependence\nof the configuration on various parameters, including the winding number,\ntemperature and inter-component coupling. We then study the (in)stability of\nsymbiotic vortex-bright soliton by both the linear approach via quasi-normal\nmodes and the full non-linear numerical simulation. Rich dynamics are found for\nthe splitting patterns and dynamical transitions. Moreover, for giant symbiotic\nvortex-bright soliton structures with large winding numbers, the vortex\nsplitting instability might be rooted in the Kelvin-Helmholtz instability. We\nalso show that the second component in the vortex core could act as a\nstabilizer so as to suppress or even prevent vortex splitting instability. Such\nstabilization mechanism opens possibility for vortices with smaller winding\nnumber to merge into vortices with larger winding number, which is confirmed\nfor the first time in our simulation.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(In)stability of symbiotic vortex-bright soliton in holographic immiscible binary superfluids\",\"authors\":\"Yuping An, Li Li\",\"doi\":\"arxiv-2409.08310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symbiotic vortex-bright soliton structures with non-trivial topological\\ncharge in one component are found to be robust in immiscibel two-component\\nsuperfluids, due to the effective potential created by a stable vortex in the\\nother component. We explore the properties of symbiotic vortex-bright soliton\\nin strongly coupled binary superfluids by holography, which naturally\\nincorporates finite temperature effect and dissipation. We show the dependence\\nof the configuration on various parameters, including the winding number,\\ntemperature and inter-component coupling. We then study the (in)stability of\\nsymbiotic vortex-bright soliton by both the linear approach via quasi-normal\\nmodes and the full non-linear numerical simulation. Rich dynamics are found for\\nthe splitting patterns and dynamical transitions. Moreover, for giant symbiotic\\nvortex-bright soliton structures with large winding numbers, the vortex\\nsplitting instability might be rooted in the Kelvin-Helmholtz instability. We\\nalso show that the second component in the vortex core could act as a\\nstabilizer so as to suppress or even prevent vortex splitting instability. Such\\nstabilization mechanism opens possibility for vortices with smaller winding\\nnumber to merge into vortices with larger winding number, which is confirmed\\nfor the first time in our simulation.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们发现,由于另一个分量中的稳定旋涡所产生的有效势能,在不相溶的双分量超流体中,一个分量中具有非三维拓扑电荷的共生旋涡-亮孤子结构是稳健的。我们通过全息技术探索了强耦合二元超流体中共生涡旋-亮孤子的特性,其中自然包含了有限温度效应和耗散。我们展示了构型对各种参数的依赖性,包括绕组数、温度和成分间耦合。然后,我们通过准正态模型线性方法和全非线性数值模拟,研究了共生涡旋-亮孤子的(不)稳定性。研究发现了丰富的动力学分裂模式和动力学转换。此外,对于大绕组数的巨型共生涡旋-亮孤子结构,涡旋分裂不稳定性可能根源于开尔文-赫尔姆霍兹不稳定性。我们的研究还表明,涡核中的第二分量可以起到稳定器的作用,从而抑制甚至阻止涡旋分裂不稳定性。这种稳定机制为较小缠绕数的涡合并为较大缠绕数的涡提供了可能性,这在我们的模拟中首次得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(In)stability of symbiotic vortex-bright soliton in holographic immiscible binary superfluids
Symbiotic vortex-bright soliton structures with non-trivial topological charge in one component are found to be robust in immiscibel two-component superfluids, due to the effective potential created by a stable vortex in the other component. We explore the properties of symbiotic vortex-bright soliton in strongly coupled binary superfluids by holography, which naturally incorporates finite temperature effect and dissipation. We show the dependence of the configuration on various parameters, including the winding number, temperature and inter-component coupling. We then study the (in)stability of symbiotic vortex-bright soliton by both the linear approach via quasi-normal modes and the full non-linear numerical simulation. Rich dynamics are found for the splitting patterns and dynamical transitions. Moreover, for giant symbiotic vortex-bright soliton structures with large winding numbers, the vortex splitting instability might be rooted in the Kelvin-Helmholtz instability. We also show that the second component in the vortex core could act as a stabilizer so as to suppress or even prevent vortex splitting instability. Such stabilization mechanism opens possibility for vortices with smaller winding number to merge into vortices with larger winding number, which is confirmed for the first time in our simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信