高维计数的超常规局部尖锐拟合优度测试

Subhodh Kotekal, Julien Chhor, Chao Gao
{"title":"高维计数的超常规局部尖锐拟合优度测试","authors":"Subhodh Kotekal, Julien Chhor, Chao Gao","doi":"arxiv-2409.08871","DOIUrl":null,"url":null,"abstract":"We consider testing the goodness-of-fit of a distribution against\nalternatives separated in sup norm. We study the twin settings of\nPoisson-generated count data with a large number of categories and\nhigh-dimensional multinomials. In previous studies of different separation\nmetrics, it has been found that the local minimax separation rate exhibits\nsubstantial heterogeneity and is a complicated function of the null\ndistribution; the rate-optimal test requires careful tailoring to the null. In\nthe setting of sup norm, this remains the case and we establish that the local\nminimax separation rate is determined by the finer decay behavior of the\ncategory rates. The upper bound is obtained by a test involving the sample\nmaximum, and the lower bound argument involves reducing the original\nheteroskedastic null to an auxiliary homoskedastic null determined by the decay\nof the rates. Further, in a particular asymptotic setup, the sharp constants\nare identified.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"209 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally sharp goodness-of-fit testing in sup norm for high-dimensional counts\",\"authors\":\"Subhodh Kotekal, Julien Chhor, Chao Gao\",\"doi\":\"arxiv-2409.08871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider testing the goodness-of-fit of a distribution against\\nalternatives separated in sup norm. We study the twin settings of\\nPoisson-generated count data with a large number of categories and\\nhigh-dimensional multinomials. In previous studies of different separation\\nmetrics, it has been found that the local minimax separation rate exhibits\\nsubstantial heterogeneity and is a complicated function of the null\\ndistribution; the rate-optimal test requires careful tailoring to the null. In\\nthe setting of sup norm, this remains the case and we establish that the local\\nminimax separation rate is determined by the finer decay behavior of the\\ncategory rates. The upper bound is obtained by a test involving the sample\\nmaximum, and the lower bound argument involves reducing the original\\nheteroskedastic null to an auxiliary homoskedastic null determined by the decay\\nof the rates. Further, in a particular asymptotic setup, the sharp constants\\nare identified.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"209 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑用超常规分离的替代变量来测试分布的拟合优度。我们研究的是具有大量类别和高维多项式的泊松计数数据。在以前对不同分离度量的研究中,我们发现局部最小分离率表现出很大的异质性,并且是空分布的一个复杂函数;最优分离率检验需要对空分布进行仔细调整。在 sup norm 的设置中,情况依然如此,我们确定局部最小分离率是由类别率更精细的衰减行为决定的。上界是通过涉及样本最大值的检验得到的,而下界的论证涉及将原来的异方差空值简化为由速率衰减决定的辅助同方差空值。此外,在一个特定的渐近设置中,确定了尖锐常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally sharp goodness-of-fit testing in sup norm for high-dimensional counts
We consider testing the goodness-of-fit of a distribution against alternatives separated in sup norm. We study the twin settings of Poisson-generated count data with a large number of categories and high-dimensional multinomials. In previous studies of different separation metrics, it has been found that the local minimax separation rate exhibits substantial heterogeneity and is a complicated function of the null distribution; the rate-optimal test requires careful tailoring to the null. In the setting of sup norm, this remains the case and we establish that the local minimax separation rate is determined by the finer decay behavior of the category rates. The upper bound is obtained by a test involving the sample maximum, and the lower bound argument involves reducing the original heteroskedastic null to an auxiliary homoskedastic null determined by the decay of the rates. Further, in a particular asymptotic setup, the sharp constants are identified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信