不规则观测长记忆过程的渐近线

Mohamedou Ould-Haye, Anne Philippe
{"title":"不规则观测长记忆过程的渐近线","authors":"Mohamedou Ould-Haye, Anne Philippe","doi":"arxiv-2409.09498","DOIUrl":null,"url":null,"abstract":"We study the effect of observing a stationary process at irregular time\npoints via a renewal process. We establish a sharp difference in the asymptotic\nbehaviour of the self-normalized sample mean of the observed process depending\non the renewal process. In particular, we show that if the renewal process has\na moderate heavy tail distribution then the limit is a so-called Normal\nVariance Mixture (NVM) and we characterize the randomized variance part of the\nlimiting NVM as an integral function of a L\\'evy stable motion. Otherwise, the\nnormalized sample mean will be asymptotically normal.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for irregularly observed long memory processes\",\"authors\":\"Mohamedou Ould-Haye, Anne Philippe\",\"doi\":\"arxiv-2409.09498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the effect of observing a stationary process at irregular time\\npoints via a renewal process. We establish a sharp difference in the asymptotic\\nbehaviour of the self-normalized sample mean of the observed process depending\\non the renewal process. In particular, we show that if the renewal process has\\na moderate heavy tail distribution then the limit is a so-called Normal\\nVariance Mixture (NVM) and we characterize the randomized variance part of the\\nlimiting NVM as an integral function of a L\\\\'evy stable motion. Otherwise, the\\nnormalized sample mean will be asymptotically normal.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了通过更新过程在不规则时间点观测静止过程的效果。我们发现,观测过程的自归一化样本平均值的渐近行为与更新过程有显著差异。特别是,我们证明了如果更新过程具有适度的重尾分布,那么极限就是所谓的正态方差混集(NVM),并且我们将极限 NVM 的随机方差部分表征为 L\'evy 稳定运动的积分函数。否则,归一化样本平均数将是渐近正态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics for irregularly observed long memory processes
We study the effect of observing a stationary process at irregular time points via a renewal process. We establish a sharp difference in the asymptotic behaviour of the self-normalized sample mean of the observed process depending on the renewal process. In particular, we show that if the renewal process has a moderate heavy tail distribution then the limit is a so-called Normal Variance Mixture (NVM) and we characterize the randomized variance part of the limiting NVM as an integral function of a L\'evy stable motion. Otherwise, the normalized sample mean will be asymptotically normal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信