i.i.d. 数据的希尔伯特值 U 统计指数不等式

Davide GiraudoIRMA
{"title":"i.i.d. 数据的希尔伯特值 U 统计指数不等式","authors":"Davide GiraudoIRMA","doi":"arxiv-2409.11737","DOIUrl":null,"url":null,"abstract":"In this paper, we establish an exponential inequality for U-statistics of\ni.i.d. data, varying kernel and taking values in a separable Hilbert space. The\nbound are expressed as a sum of an exponential term plus an other one involving\nthe tail of a sum of squared norms. We start by the degenerate case. Then we\nprovide applications to U-statistics of not necessarily degenerate fixed\nkernel, weighted U-statistics and incomplete U-statistics.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exponential inequality for Hilbert-valued U-statistics of i.i.d. data\",\"authors\":\"Davide GiraudoIRMA\",\"doi\":\"arxiv-2409.11737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish an exponential inequality for U-statistics of\\ni.i.d. data, varying kernel and taking values in a separable Hilbert space. The\\nbound are expressed as a sum of an exponential term plus an other one involving\\nthe tail of a sum of squared norms. We start by the degenerate case. Then we\\nprovide applications to U-statistics of not necessarily degenerate fixed\\nkernel, weighted U-statistics and incomplete U-statistics.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了一个指数不等式,用于 i.i.d. 数据、变化内核和在可分离的希尔伯特空间中取值的 U 统计量。边界表示为一个指数项加上另一个涉及平方准则之和尾部的总和。我们首先讨论退化情况。然后,我们将其应用于不一定是退化定核的 U 统计、加权 U 统计和不完全 U 统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An exponential inequality for Hilbert-valued U-statistics of i.i.d. data
In this paper, we establish an exponential inequality for U-statistics of i.i.d. data, varying kernel and taking values in a separable Hilbert space. The bound are expressed as a sum of an exponential term plus an other one involving the tail of a sum of squared norms. We start by the degenerate case. Then we provide applications to U-statistics of not necessarily degenerate fixed kernel, weighted U-statistics and incomplete U-statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信