保角推理的渐近论

Ulysse Gazin
{"title":"保角推理的渐近论","authors":"Ulysse Gazin","doi":"arxiv-2409.12019","DOIUrl":null,"url":null,"abstract":"Conformal inference is a versatile tool for building prediction sets in\nregression or classification. In this paper, we consider the false coverage\nproportion (FCP) in a transductive setting with a calibration sample of n\npoints and a test sample of m points. We identify the exact, distribution-free,\nasymptotic distribution of the FCP when both n and m tend to infinity. This\nshows in particular that FCP control can be achieved by using the well-known\nKolmogorov distribution, and puts forward that the asymptotic variance is\ndecreasing in the ratio n/m. We then provide a number of extensions by\nconsidering the novelty detection problem, weighted conformal inference and\ndistribution shift between the calibration sample and the test sample. In\nparticular, our asymptotical results allow to accurately quantify the\nasymptotical behavior of the errors when weighted conformal inference is used.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for conformal inference\",\"authors\":\"Ulysse Gazin\",\"doi\":\"arxiv-2409.12019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conformal inference is a versatile tool for building prediction sets in\\nregression or classification. In this paper, we consider the false coverage\\nproportion (FCP) in a transductive setting with a calibration sample of n\\npoints and a test sample of m points. We identify the exact, distribution-free,\\nasymptotic distribution of the FCP when both n and m tend to infinity. This\\nshows in particular that FCP control can be achieved by using the well-known\\nKolmogorov distribution, and puts forward that the asymptotic variance is\\ndecreasing in the ratio n/m. We then provide a number of extensions by\\nconsidering the novelty detection problem, weighted conformal inference and\\ndistribution shift between the calibration sample and the test sample. In\\nparticular, our asymptotical results allow to accurately quantify the\\nasymptotical behavior of the errors when weighted conformal inference is used.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

共形推理是建立回归或分类预测集的通用工具。在本文中,我们考虑了在具有 n 个点的校准样本和 m 个点的测试样本的反演环境中的虚假覆盖率(FCP)。我们确定了当 n 和 m 都趋于无穷大时,FCP 的精确、无分布、渐近分布。这特别表明,使用著名的科尔莫戈罗夫分布可以实现 FCP 控制,并提出渐近方差随 n/m 之比递减。然后,我们通过考虑新颖性检测问题、加权保形推理以及校准样本和测试样本之间的分布偏移,提出了一些扩展方法。特别是,当使用加权保形推理时,我们的渐近结果可以准确量化误差的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics for conformal inference
Conformal inference is a versatile tool for building prediction sets in regression or classification. In this paper, we consider the false coverage proportion (FCP) in a transductive setting with a calibration sample of n points and a test sample of m points. We identify the exact, distribution-free, asymptotic distribution of the FCP when both n and m tend to infinity. This shows in particular that FCP control can be achieved by using the well-known Kolmogorov distribution, and puts forward that the asymptotic variance is decreasing in the ratio n/m. We then provide a number of extensions by considering the novelty detection problem, weighted conformal inference and distribution shift between the calibration sample and the test sample. In particular, our asymptotical results allow to accurately quantify the asymptotical behavior of the errors when weighted conformal inference is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信