FDDCC-VSR:基于可变形三维卷积和廉价卷积的轻量级视频超分辨率网络

Xiaohu Wang, Xin Yang, Hengrui Li, Tao Li
{"title":"FDDCC-VSR:基于可变形三维卷积和廉价卷积的轻量级视频超分辨率网络","authors":"Xiaohu Wang, Xin Yang, Hengrui Li, Tao Li","doi":"10.1007/s00371-024-03621-x","DOIUrl":null,"url":null,"abstract":"<p>Currently, the mainstream deep video super-resolution (VSR) models typically employ deeper neural network layers or larger receptive fields. This approach increases computational requirements, making network training difficult and inefficient. Therefore, this paper proposes a VSR model called fusion of deformable 3D convolution and cheap convolution (FDDCC-VSR).In FDDCC-VSR, we first divide the detailed features of each frame in VSR into dynamic features of visual moving objects and details of static backgrounds. This division allows for the use of fewer specialized convolutions in feature extraction, resulting in a lightweight network that is easier to train. Furthermore, FDDCC-VSR incorporates multiple D-C CRBs (Convolutional Residual Blocks), which establish a lightweight spatial attention mechanism to aid deformable 3D convolution. This enables the model to focus on learning the corresponding feature details. Finally, we employ an improved bicubic interpolation combined with subpixel techniques to enhance the PSNR (Peak Signal-to-Noise Ratio) value of the original image. Detailed experiments demonstrate that FDDCC-VSR outperforms the most advanced algorithms in terms of both subjective visual effects and objective evaluation criteria. Additionally, our model exhibits a small parameter and calculation overhead.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FDDCC-VSR: a lightweight video super-resolution network based on deformable 3D convolution and cheap convolution\",\"authors\":\"Xiaohu Wang, Xin Yang, Hengrui Li, Tao Li\",\"doi\":\"10.1007/s00371-024-03621-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, the mainstream deep video super-resolution (VSR) models typically employ deeper neural network layers or larger receptive fields. This approach increases computational requirements, making network training difficult and inefficient. Therefore, this paper proposes a VSR model called fusion of deformable 3D convolution and cheap convolution (FDDCC-VSR).In FDDCC-VSR, we first divide the detailed features of each frame in VSR into dynamic features of visual moving objects and details of static backgrounds. This division allows for the use of fewer specialized convolutions in feature extraction, resulting in a lightweight network that is easier to train. Furthermore, FDDCC-VSR incorporates multiple D-C CRBs (Convolutional Residual Blocks), which establish a lightweight spatial attention mechanism to aid deformable 3D convolution. This enables the model to focus on learning the corresponding feature details. Finally, we employ an improved bicubic interpolation combined with subpixel techniques to enhance the PSNR (Peak Signal-to-Noise Ratio) value of the original image. Detailed experiments demonstrate that FDDCC-VSR outperforms the most advanced algorithms in terms of both subjective visual effects and objective evaluation criteria. Additionally, our model exhibits a small parameter and calculation overhead.</p>\",\"PeriodicalId\":501186,\"journal\":{\"name\":\"The Visual Computer\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Visual Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00371-024-03621-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03621-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,主流的深度视频超分辨率(VSR)模型通常采用更深的神经网络层或更大的感受野。这种方法增加了计算要求,使网络训练变得困难和低效。因此,本文提出了一种名为可变形三维卷积与廉价卷积融合(FDDCC-VSR)的 VSR 模型。在 FDDCC-VSR 中,我们首先将 VSR 中每一帧的细节特征分为视觉运动物体的动态特征和静态背景的细节特征。通过这种划分,可以在特征提取中使用较少的专门卷积,从而使网络更轻便,更易于训练。此外,FDDCC-VSR 还采用了多个 D-C CRB(卷积残差块),建立了一个轻量级的空间注意力机制,以辅助可变形三维卷积。这使得模型能够专注于学习相应的特征细节。最后,我们采用了改进的双三次插值法,并结合子像素技术来提高原始图像的 PSNR(峰值信噪比)值。详细的实验表明,FDDCC-VSR 在主观视觉效果和客观评价标准方面都优于最先进的算法。此外,我们的模型参数和计算开销很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

FDDCC-VSR: a lightweight video super-resolution network based on deformable 3D convolution and cheap convolution

FDDCC-VSR: a lightweight video super-resolution network based on deformable 3D convolution and cheap convolution

Currently, the mainstream deep video super-resolution (VSR) models typically employ deeper neural network layers or larger receptive fields. This approach increases computational requirements, making network training difficult and inefficient. Therefore, this paper proposes a VSR model called fusion of deformable 3D convolution and cheap convolution (FDDCC-VSR).In FDDCC-VSR, we first divide the detailed features of each frame in VSR into dynamic features of visual moving objects and details of static backgrounds. This division allows for the use of fewer specialized convolutions in feature extraction, resulting in a lightweight network that is easier to train. Furthermore, FDDCC-VSR incorporates multiple D-C CRBs (Convolutional Residual Blocks), which establish a lightweight spatial attention mechanism to aid deformable 3D convolution. This enables the model to focus on learning the corresponding feature details. Finally, we employ an improved bicubic interpolation combined with subpixel techniques to enhance the PSNR (Peak Signal-to-Noise Ratio) value of the original image. Detailed experiments demonstrate that FDDCC-VSR outperforms the most advanced algorithms in terms of both subjective visual effects and objective evaluation criteria. Additionally, our model exhibits a small parameter and calculation overhead.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信