Jonas R. Naujoks, Aleksander Krasowski, Moritz Weckbecker, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek, René P. Klausen
{"title":"PINNfluence:物理信息神经网络的影响函数","authors":"Jonas R. Naujoks, Aleksander Krasowski, Moritz Weckbecker, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek, René P. Klausen","doi":"arxiv-2409.08958","DOIUrl":null,"url":null,"abstract":"Recently, physics-informed neural networks (PINNs) have emerged as a flexible\nand promising application of deep learning to partial differential equations in\nthe physical sciences. While offering strong performance and competitive\ninference speeds on forward and inverse problems, their black-box nature limits\ninterpretability, particularly regarding alignment with expected physical\nbehavior. In the present work, we explore the application of influence\nfunctions (IFs) to validate and debug PINNs post-hoc. Specifically, we apply\nvariations of IF-based indicators to gauge the influence of different types of\ncollocation points on the prediction of PINNs applied to a 2D Navier-Stokes\nfluid flow problem. Our results demonstrate how IFs can be adapted to PINNs to\nreveal the potential for further studies.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PINNfluence: Influence Functions for Physics-Informed Neural Networks\",\"authors\":\"Jonas R. Naujoks, Aleksander Krasowski, Moritz Weckbecker, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek, René P. Klausen\",\"doi\":\"arxiv-2409.08958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, physics-informed neural networks (PINNs) have emerged as a flexible\\nand promising application of deep learning to partial differential equations in\\nthe physical sciences. While offering strong performance and competitive\\ninference speeds on forward and inverse problems, their black-box nature limits\\ninterpretability, particularly regarding alignment with expected physical\\nbehavior. In the present work, we explore the application of influence\\nfunctions (IFs) to validate and debug PINNs post-hoc. Specifically, we apply\\nvariations of IF-based indicators to gauge the influence of different types of\\ncollocation points on the prediction of PINNs applied to a 2D Navier-Stokes\\nfluid flow problem. Our results demonstrate how IFs can be adapted to PINNs to\\nreveal the potential for further studies.\",\"PeriodicalId\":501125,\"journal\":{\"name\":\"arXiv - PHYS - Fluid Dynamics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最近,物理信息神经网络(PINNs)作为深度学习在物理科学偏微分方程中的一种灵活而有前途的应用而崭露头角。虽然它们在正演和反演问题上具有强大的性能和极具竞争力的推理速度,但其黑箱性质限制了其可解释性,尤其是在与预期物理行为的一致性方面。在本研究中,我们探索了如何应用影响函数(IF)来验证和调试 PINN。具体来说,我们应用基于影响函数的指标变量来衡量不同类型的定位点对应用于二维纳维-斯托克斯流体流动问题的 PINN 预测的影响。我们的结果表明了 IF 如何适用于 PINN,从而揭示了进一步研究的潜力。
PINNfluence: Influence Functions for Physics-Informed Neural Networks
Recently, physics-informed neural networks (PINNs) have emerged as a flexible
and promising application of deep learning to partial differential equations in
the physical sciences. While offering strong performance and competitive
inference speeds on forward and inverse problems, their black-box nature limits
interpretability, particularly regarding alignment with expected physical
behavior. In the present work, we explore the application of influence
functions (IFs) to validate and debug PINNs post-hoc. Specifically, we apply
variations of IF-based indicators to gauge the influence of different types of
collocation points on the prediction of PINNs applied to a 2D Navier-Stokes
fluid flow problem. Our results demonstrate how IFs can be adapted to PINNs to
reveal the potential for further studies.