PINNfluence:物理信息神经网络的影响函数

Jonas R. Naujoks, Aleksander Krasowski, Moritz Weckbecker, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek, René P. Klausen
{"title":"PINNfluence:物理信息神经网络的影响函数","authors":"Jonas R. Naujoks, Aleksander Krasowski, Moritz Weckbecker, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek, René P. Klausen","doi":"arxiv-2409.08958","DOIUrl":null,"url":null,"abstract":"Recently, physics-informed neural networks (PINNs) have emerged as a flexible\nand promising application of deep learning to partial differential equations in\nthe physical sciences. While offering strong performance and competitive\ninference speeds on forward and inverse problems, their black-box nature limits\ninterpretability, particularly regarding alignment with expected physical\nbehavior. In the present work, we explore the application of influence\nfunctions (IFs) to validate and debug PINNs post-hoc. Specifically, we apply\nvariations of IF-based indicators to gauge the influence of different types of\ncollocation points on the prediction of PINNs applied to a 2D Navier-Stokes\nfluid flow problem. Our results demonstrate how IFs can be adapted to PINNs to\nreveal the potential for further studies.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PINNfluence: Influence Functions for Physics-Informed Neural Networks\",\"authors\":\"Jonas R. Naujoks, Aleksander Krasowski, Moritz Weckbecker, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek, René P. Klausen\",\"doi\":\"arxiv-2409.08958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, physics-informed neural networks (PINNs) have emerged as a flexible\\nand promising application of deep learning to partial differential equations in\\nthe physical sciences. While offering strong performance and competitive\\ninference speeds on forward and inverse problems, their black-box nature limits\\ninterpretability, particularly regarding alignment with expected physical\\nbehavior. In the present work, we explore the application of influence\\nfunctions (IFs) to validate and debug PINNs post-hoc. Specifically, we apply\\nvariations of IF-based indicators to gauge the influence of different types of\\ncollocation points on the prediction of PINNs applied to a 2D Navier-Stokes\\nfluid flow problem. Our results demonstrate how IFs can be adapted to PINNs to\\nreveal the potential for further studies.\",\"PeriodicalId\":501125,\"journal\":{\"name\":\"arXiv - PHYS - Fluid Dynamics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,物理信息神经网络(PINNs)作为深度学习在物理科学偏微分方程中的一种灵活而有前途的应用而崭露头角。虽然它们在正演和反演问题上具有强大的性能和极具竞争力的推理速度,但其黑箱性质限制了其可解释性,尤其是在与预期物理行为的一致性方面。在本研究中,我们探索了如何应用影响函数(IF)来验证和调试 PINN。具体来说,我们应用基于影响函数的指标变量来衡量不同类型的定位点对应用于二维纳维-斯托克斯流体流动问题的 PINN 预测的影响。我们的结果表明了 IF 如何适用于 PINN,从而揭示了进一步研究的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PINNfluence: Influence Functions for Physics-Informed Neural Networks
Recently, physics-informed neural networks (PINNs) have emerged as a flexible and promising application of deep learning to partial differential equations in the physical sciences. While offering strong performance and competitive inference speeds on forward and inverse problems, their black-box nature limits interpretability, particularly regarding alignment with expected physical behavior. In the present work, we explore the application of influence functions (IFs) to validate and debug PINNs post-hoc. Specifically, we apply variations of IF-based indicators to gauge the influence of different types of collocation points on the prediction of PINNs applied to a 2D Navier-Stokes fluid flow problem. Our results demonstrate how IFs can be adapted to PINNs to reveal the potential for further studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信