高雷诺数泰勒--库埃特湍流中曲率效应的协变代数雷诺应力模型

Kazuhiro Inagaki, Yasufumi Horimoto
{"title":"高雷诺数泰勒--库埃特湍流中曲率效应的协变代数雷诺应力模型","authors":"Kazuhiro Inagaki, Yasufumi Horimoto","doi":"arxiv-2409.08471","DOIUrl":null,"url":null,"abstract":"Nearly constant mean angular momentum profiles are widely observed in curved\nturbulent flows, including the bulk region of Taylor--Couette (TC) flows, where\nthe inner and outer cylinders have weakly counter-rotating and co-rotating\nconditions. For high-Reynolds-number TC flows under these conditions, both the\nbulk and boundary layers become turbulent without Taylor rolls, referred to as\nthe featureless ultimate regime (UR). In this study, we examine\nReynolds-averaged Navier--Stokes (RANS) models to predict the nearly constant\nmean angular velocity as a one-dimensional problem in the featureless UR of TC\nturbulence. High-Reynolds-number experiments of TC turbulence are performed for\nreference, where the radius ratio is $\\eta = r_\\mathrm{in}/r_\\mathrm{out} =\n0.732$ and angular velocity ratio $a = -\\omega_\\mathrm{out}/\\omega_\\mathrm{in}$\nis in the range $-0.5 \\le a \\le 0.1$. Verification of the RANS model using the\nalgebraic Reynolds stress model (ARSM) suggests that convection of the Reynolds\nstress is essential for predicting the angular momentum profile. We introduce\nthe Jaumann derivative as a covariant time derivative to develop ARSMs that\nincorporate the convection effect in a covariant manner. The proposed ARSM\nusing the Jaumann derivative of the term composed of the strain and vorticity\ntensors successfully predicts the nearly constant mean angular momentum for a\nwide range of angular velocity ratios in the co-rotating case. The modelling\napproach incorporating time-derivative terms is a candidate for expressing\ncurvature effects while satisfying the covariance of the Reynolds stress\ntensor.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariant algebraic Reynolds stress modelling of curvature effects in high-Reynolds-number Taylor--Couette turbulence\",\"authors\":\"Kazuhiro Inagaki, Yasufumi Horimoto\",\"doi\":\"arxiv-2409.08471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nearly constant mean angular momentum profiles are widely observed in curved\\nturbulent flows, including the bulk region of Taylor--Couette (TC) flows, where\\nthe inner and outer cylinders have weakly counter-rotating and co-rotating\\nconditions. For high-Reynolds-number TC flows under these conditions, both the\\nbulk and boundary layers become turbulent without Taylor rolls, referred to as\\nthe featureless ultimate regime (UR). In this study, we examine\\nReynolds-averaged Navier--Stokes (RANS) models to predict the nearly constant\\nmean angular velocity as a one-dimensional problem in the featureless UR of TC\\nturbulence. High-Reynolds-number experiments of TC turbulence are performed for\\nreference, where the radius ratio is $\\\\eta = r_\\\\mathrm{in}/r_\\\\mathrm{out} =\\n0.732$ and angular velocity ratio $a = -\\\\omega_\\\\mathrm{out}/\\\\omega_\\\\mathrm{in}$\\nis in the range $-0.5 \\\\le a \\\\le 0.1$. Verification of the RANS model using the\\nalgebraic Reynolds stress model (ARSM) suggests that convection of the Reynolds\\nstress is essential for predicting the angular momentum profile. We introduce\\nthe Jaumann derivative as a covariant time derivative to develop ARSMs that\\nincorporate the convection effect in a covariant manner. The proposed ARSM\\nusing the Jaumann derivative of the term composed of the strain and vorticity\\ntensors successfully predicts the nearly constant mean angular momentum for a\\nwide range of angular velocity ratios in the co-rotating case. The modelling\\napproach incorporating time-derivative terms is a candidate for expressing\\ncurvature effects while satisfying the covariance of the Reynolds stress\\ntensor.\",\"PeriodicalId\":501125,\"journal\":{\"name\":\"arXiv - PHYS - Fluid Dynamics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在弯曲湍流(包括泰勒--库埃特(TC)流的主体区域)中广泛观察到近乎恒定的平均角动量剖面,其中内筒和外筒具有弱反转和共转条件。对于这些条件下的高雷诺数 TC 流,流体层和边界层都会变成没有泰勒卷的湍流,称为无特征终极制度(UR)。在本研究中,我们研究了雷诺数平均纳维-斯托克斯(RANS)模型,以预测 TC 湍流的无特征终极制度(UR)中作为一维问题的近恒定平均角速度。进行了TC湍流的高雷诺数实验作为参考,其中半径比为$\ea = r_\mathrm{in}/r_\mathrm{out} =0.732$,角速度比$a = -\omega_\mathrm{out}/\omega_\mathrm{in}$ 的范围为$-0.5 \le a \le 0.1$。使用代数雷诺应力模型(ARSM)验证 RANS 模型表明,雷诺应力的对流对于预测角动量剖面至关重要。我们引入 Jaumann 导数作为协变时间导数,开发出以协变方式纳入对流效应的 ARSM。利用应变和涡度传感器组成的 Jaumann 导数项提出的 ARSM 成功地预测了共旋转情况下角速度比范围较大的近乎恒定的平均角动量。包含时间导数项的建模方法是一种既能表达曲率效应又能满足雷诺应变传感器协方差的候选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariant algebraic Reynolds stress modelling of curvature effects in high-Reynolds-number Taylor--Couette turbulence
Nearly constant mean angular momentum profiles are widely observed in curved turbulent flows, including the bulk region of Taylor--Couette (TC) flows, where the inner and outer cylinders have weakly counter-rotating and co-rotating conditions. For high-Reynolds-number TC flows under these conditions, both the bulk and boundary layers become turbulent without Taylor rolls, referred to as the featureless ultimate regime (UR). In this study, we examine Reynolds-averaged Navier--Stokes (RANS) models to predict the nearly constant mean angular velocity as a one-dimensional problem in the featureless UR of TC turbulence. High-Reynolds-number experiments of TC turbulence are performed for reference, where the radius ratio is $\eta = r_\mathrm{in}/r_\mathrm{out} = 0.732$ and angular velocity ratio $a = -\omega_\mathrm{out}/\omega_\mathrm{in}$ is in the range $-0.5 \le a \le 0.1$. Verification of the RANS model using the algebraic Reynolds stress model (ARSM) suggests that convection of the Reynolds stress is essential for predicting the angular momentum profile. We introduce the Jaumann derivative as a covariant time derivative to develop ARSMs that incorporate the convection effect in a covariant manner. The proposed ARSM using the Jaumann derivative of the term composed of the strain and vorticity tensors successfully predicts the nearly constant mean angular momentum for a wide range of angular velocity ratios in the co-rotating case. The modelling approach incorporating time-derivative terms is a candidate for expressing curvature effects while satisfying the covariance of the Reynolds stress tensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信