减数分裂 II 卵母细胞中纺锤体稳定定位的水动力机制

Weida Liao, Eric Lauga
{"title":"减数分裂 II 卵母细胞中纺锤体稳定定位的水动力机制","authors":"Weida Liao, Eric Lauga","doi":"arxiv-2409.10401","DOIUrl":null,"url":null,"abstract":"Cytoplasmic streaming, the persistent flow of fluid inside a cell, induces\nintracellular transport, which plays a key role in fundamental biological\nprocesses. In meiosis II mouse oocytes (developing egg cells) awaiting\nfertilisation, the spindle, which is the protein structure responsible for\ndividing genetic material in a cell, must maintain its position near the cell\ncortex (the thin actin network bound to the cell membrane) for many hours.\nHowever, the cytoplasmic streaming that accompanies this stable positioning\nwould intuitively appear to destabilise the spindle position. Here, through a\ncombination of numerical and analytical modelling, we reveal a new,\nhydrodynamic mechanism for stable spindle positioning beneath the cortical cap.\nWe show that this stability depends critically on the spindle size and the\nactive driving from the cortex, and demonstrate that stable spindle positioning\ncan result purely from a hydrodynamic suction force exerted on the spindle by\nthe cytoplasmic flow. Our findings show that local fluid dynamic forces can be\nsufficient to stabilise the spindle, explaining robustness against\nperturbations not only perpendicular but also parallel to the cortex. Our\nresults shed light on the importance of cytoplasmic streaming in mammalian\nmeiosis.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic mechanism for stable spindle positioning in meiosis II oocytes\",\"authors\":\"Weida Liao, Eric Lauga\",\"doi\":\"arxiv-2409.10401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cytoplasmic streaming, the persistent flow of fluid inside a cell, induces\\nintracellular transport, which plays a key role in fundamental biological\\nprocesses. In meiosis II mouse oocytes (developing egg cells) awaiting\\nfertilisation, the spindle, which is the protein structure responsible for\\ndividing genetic material in a cell, must maintain its position near the cell\\ncortex (the thin actin network bound to the cell membrane) for many hours.\\nHowever, the cytoplasmic streaming that accompanies this stable positioning\\nwould intuitively appear to destabilise the spindle position. Here, through a\\ncombination of numerical and analytical modelling, we reveal a new,\\nhydrodynamic mechanism for stable spindle positioning beneath the cortical cap.\\nWe show that this stability depends critically on the spindle size and the\\nactive driving from the cortex, and demonstrate that stable spindle positioning\\ncan result purely from a hydrodynamic suction force exerted on the spindle by\\nthe cytoplasmic flow. Our findings show that local fluid dynamic forces can be\\nsufficient to stabilise the spindle, explaining robustness against\\nperturbations not only perpendicular but also parallel to the cortex. Our\\nresults shed light on the importance of cytoplasmic streaming in mammalian\\nmeiosis.\",\"PeriodicalId\":501125,\"journal\":{\"name\":\"arXiv - PHYS - Fluid Dynamics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞质流是细胞内液体的持续流动,它诱导细胞内运输,在基本生物过程中起着关键作用。在等待受精的小鼠卵母细胞(发育中的卵细胞)减数第二次分裂过程中,负责分割细胞中遗传物质的蛋白质结构--纺锤体必须长时间保持其靠近细胞旋涡(与细胞膜结合的细肌动蛋白网络)的位置。在这里,我们通过数值模拟和分析建模相结合的方法,揭示了一种新的流体动力学机制,它能使纺锤体在皮层帽下稳定定位。我们的研究表明,这种稳定性主要取决于纺锤体的大小和来自皮层的主动驱动力,并证明纺锤体的稳定定位可以完全来自于细胞质流对纺锤体施加的流体动力学吸力。我们的研究结果表明,局部流体动力足以使纺锤体保持稳定,这解释了纺锤体不仅能抵御垂直于皮层的扰动,还能抵御平行于皮层的扰动。我们的研究结果揭示了细胞质流在哺乳动物减数分裂过程中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrodynamic mechanism for stable spindle positioning in meiosis II oocytes
Cytoplasmic streaming, the persistent flow of fluid inside a cell, induces intracellular transport, which plays a key role in fundamental biological processes. In meiosis II mouse oocytes (developing egg cells) awaiting fertilisation, the spindle, which is the protein structure responsible for dividing genetic material in a cell, must maintain its position near the cell cortex (the thin actin network bound to the cell membrane) for many hours. However, the cytoplasmic streaming that accompanies this stable positioning would intuitively appear to destabilise the spindle position. Here, through a combination of numerical and analytical modelling, we reveal a new, hydrodynamic mechanism for stable spindle positioning beneath the cortical cap. We show that this stability depends critically on the spindle size and the active driving from the cortex, and demonstrate that stable spindle positioning can result purely from a hydrodynamic suction force exerted on the spindle by the cytoplasmic flow. Our findings show that local fluid dynamic forces can be sufficient to stabilise the spindle, explaining robustness against perturbations not only perpendicular but also parallel to the cortex. Our results shed light on the importance of cytoplasmic streaming in mammalian meiosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信