剪切稀化液体的巨型超疏水性滑移

Ory Schnitzer, Prasun K. Ray
{"title":"剪切稀化液体的巨型超疏水性滑移","authors":"Ory Schnitzer, Prasun K. Ray","doi":"arxiv-2409.09374","DOIUrl":null,"url":null,"abstract":"We theoretically illustrate how complex fluids flowing over superhydrophobic\nsurfaces may exhibit giant flow enhancements in the double limit of small solid\nfractions ($\\epsilon\\ll1$) and strong shear thinning ($\\beta\\ll1$, $\\beta$\nbeing the ratio of the viscosity at infinite shear rate to that at zero shear\nrate). Considering a Carreau liquid within the canonical scenario of\nlongitudinal shear-driven flow over a grooved superhydrophobic surface, we show\nthat, as $\\beta$ is decreased, the scaling of the effective slip length at\nsmall solid fractions is enhanced from the logarithmic scaling\n$\\ln(1/\\epsilon)$ for Newtonian fluids to the algebraic scaling\n$1/\\epsilon^{\\frac{1-n}{n}}$, attained for\n$\\beta=\\mathcal{O}(\\epsilon^{\\frac{1-n}{n}})$, $n\\in(0,1)$ being the exponent\nin the Carreau model. We illuminate this scaling enhancement and the\ngeometric-rheological mechanism underlying it through asymptotic arguments and\nnumerical simulations.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Giant superhydrophobic slip of shear-thinning liquids\",\"authors\":\"Ory Schnitzer, Prasun K. Ray\",\"doi\":\"arxiv-2409.09374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We theoretically illustrate how complex fluids flowing over superhydrophobic\\nsurfaces may exhibit giant flow enhancements in the double limit of small solid\\nfractions ($\\\\epsilon\\\\ll1$) and strong shear thinning ($\\\\beta\\\\ll1$, $\\\\beta$\\nbeing the ratio of the viscosity at infinite shear rate to that at zero shear\\nrate). Considering a Carreau liquid within the canonical scenario of\\nlongitudinal shear-driven flow over a grooved superhydrophobic surface, we show\\nthat, as $\\\\beta$ is decreased, the scaling of the effective slip length at\\nsmall solid fractions is enhanced from the logarithmic scaling\\n$\\\\ln(1/\\\\epsilon)$ for Newtonian fluids to the algebraic scaling\\n$1/\\\\epsilon^{\\\\frac{1-n}{n}}$, attained for\\n$\\\\beta=\\\\mathcal{O}(\\\\epsilon^{\\\\frac{1-n}{n}})$, $n\\\\in(0,1)$ being the exponent\\nin the Carreau model. We illuminate this scaling enhancement and the\\ngeometric-rheological mechanism underlying it through asymptotic arguments and\\nnumerical simulations.\",\"PeriodicalId\":501125,\"journal\":{\"name\":\"arXiv - PHYS - Fluid Dynamics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从理论上说明了流过超疏水表面的复杂流体如何在小固体分量($\epsilon\ll1$)和强剪切稀化($\beta\ll1$,$\beta$是无限剪切速率下的粘度与零剪切速率下的粘度之比)的双重限制下表现出巨大的流动增强。考虑到在一个开槽的超疏水表面上纵向剪切力驱动流动的典型情景下的Carreau液体,我们表明,随着$\beta$的减小、小固含量下有效滑移长度的缩放比例从牛顿流体的对数缩放比例$\ln(1/\epsilon)$提高到代数缩放比例$1/\epsilon^{\frac{1-n}{n}$、达到$\beta=\mathcal{O}(\epsilon^{frac{1-n}{n}})$,$n\in(0,1)$是卡鲁模型中的指数。我们通过渐近论证和数值模拟阐明了这种缩放增强及其背后的几何流变学机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Giant superhydrophobic slip of shear-thinning liquids
We theoretically illustrate how complex fluids flowing over superhydrophobic surfaces may exhibit giant flow enhancements in the double limit of small solid fractions ($\epsilon\ll1$) and strong shear thinning ($\beta\ll1$, $\beta$ being the ratio of the viscosity at infinite shear rate to that at zero shear rate). Considering a Carreau liquid within the canonical scenario of longitudinal shear-driven flow over a grooved superhydrophobic surface, we show that, as $\beta$ is decreased, the scaling of the effective slip length at small solid fractions is enhanced from the logarithmic scaling $\ln(1/\epsilon)$ for Newtonian fluids to the algebraic scaling $1/\epsilon^{\frac{1-n}{n}}$, attained for $\beta=\mathcal{O}(\epsilon^{\frac{1-n}{n}})$, $n\in(0,1)$ being the exponent in the Carreau model. We illuminate this scaling enhancement and the geometric-rheological mechanism underlying it through asymptotic arguments and numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信