二维哈密顿流的增强耗散

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Elia Bruè, Michele Coti Zelati, Elio Marconi
{"title":"二维哈密顿流的增强耗散","authors":"Elia Bruè,&nbsp;Michele Coti Zelati,&nbsp;Elio Marconi","doi":"10.1007/s00205-024-02034-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(H\\in C^1\\cap W^{2,p}\\)</span> be an autonomous, non-constant Hamiltonian on a compact 2-dimensional manifold, generating an incompressible velocity field <span>\\(b=\\nabla ^\\perp H\\)</span>. We give sharp upper bounds on the enhanced dissipation rate of <i>b</i> in terms of the properties of the period <i>T</i>(<i>h</i>) of the closed orbit <span>\\(\\{H=h\\}\\)</span>. Specifically, if <span>\\(0&lt;\\nu \\ll 1\\)</span> is the diffusion coefficient, the enhanced dissipation rate can be at most <span>\\(O(\\nu ^{1/3})\\)</span> in general, the bound improves when <i>H</i> has isolated, non-degenerate elliptic points. Our result provides the better bound <span>\\(O(\\nu ^{1/2})\\)</span> for the standard cellular flow given by <span>\\(H_{\\textsf{c}}(x)=\\sin x_1 \\sin x_2\\)</span>, for which we can also prove a new upper bound on its mixing rate and a lower bound on its enhanced dissipation rate. The proofs are based on the use of action-angle coordinates and on the existence of a good invariant domain for the regular Lagrangian flow generated by <i>b</i>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02034-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced Dissipation for Two-Dimensional Hamiltonian Flows\",\"authors\":\"Elia Bruè,&nbsp;Michele Coti Zelati,&nbsp;Elio Marconi\",\"doi\":\"10.1007/s00205-024-02034-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(H\\\\in C^1\\\\cap W^{2,p}\\\\)</span> be an autonomous, non-constant Hamiltonian on a compact 2-dimensional manifold, generating an incompressible velocity field <span>\\\\(b=\\\\nabla ^\\\\perp H\\\\)</span>. We give sharp upper bounds on the enhanced dissipation rate of <i>b</i> in terms of the properties of the period <i>T</i>(<i>h</i>) of the closed orbit <span>\\\\(\\\\{H=h\\\\}\\\\)</span>. Specifically, if <span>\\\\(0&lt;\\\\nu \\\\ll 1\\\\)</span> is the diffusion coefficient, the enhanced dissipation rate can be at most <span>\\\\(O(\\\\nu ^{1/3})\\\\)</span> in general, the bound improves when <i>H</i> has isolated, non-degenerate elliptic points. Our result provides the better bound <span>\\\\(O(\\\\nu ^{1/2})\\\\)</span> for the standard cellular flow given by <span>\\\\(H_{\\\\textsf{c}}(x)=\\\\sin x_1 \\\\sin x_2\\\\)</span>, for which we can also prove a new upper bound on its mixing rate and a lower bound on its enhanced dissipation rate. The proofs are based on the use of action-angle coordinates and on the existence of a good invariant domain for the regular Lagrangian flow generated by <i>b</i>.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-024-02034-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02034-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02034-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(H\in C^1\cap W^{2,p}\) 是一个紧凑的二维流形上自发的、非恒定的哈密顿,它产生一个不可压缩的速度场 \(b=\nabla ^\perp H\) 。我们根据闭合轨道 \(\{H=h\}\)的周期 T(h)的特性给出了 b 的增强耗散率的尖锐上限。具体来说,如果\(0<\nu \ll 1\) 是扩散系数,那么增强耗散率最多为\(O(\nu ^{1/3})\),一般来说,当H有孤立的、非退化的椭圆点时,这个约束会有所改善。我们的结果为由 \(H_{\textsf{c}}(x)=\sin x_1 \sin x_2\) 给出的标准蜂窝流提供了更好的约束 \(O(\nu ^{1/2})\),我们还可以证明其混合率的新上界和增强耗散率的下界。这些证明基于作用角坐标的使用以及由 b 生成的正则拉格朗日流的良好不变域的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Dissipation for Two-Dimensional Hamiltonian Flows

Enhanced Dissipation for Two-Dimensional Hamiltonian Flows

Let \(H\in C^1\cap W^{2,p}\) be an autonomous, non-constant Hamiltonian on a compact 2-dimensional manifold, generating an incompressible velocity field \(b=\nabla ^\perp H\). We give sharp upper bounds on the enhanced dissipation rate of b in terms of the properties of the period T(h) of the closed orbit \(\{H=h\}\). Specifically, if \(0<\nu \ll 1\) is the diffusion coefficient, the enhanced dissipation rate can be at most \(O(\nu ^{1/3})\) in general, the bound improves when H has isolated, non-degenerate elliptic points. Our result provides the better bound \(O(\nu ^{1/2})\) for the standard cellular flow given by \(H_{\textsf{c}}(x)=\sin x_1 \sin x_2\), for which we can also prove a new upper bound on its mixing rate and a lower bound on its enhanced dissipation rate. The proofs are based on the use of action-angle coordinates and on the existence of a good invariant domain for the regular Lagrangian flow generated by b.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信