Lunet:用于语义分割的具有高效自我关注功能的增强型上采样融合网络

Yan Zhou, Haibin Zhou, Yin Yang, Jianxun Li, Richard Irampaye, Dongli Wang, Zhengpeng Zhang
{"title":"Lunet:用于语义分割的具有高效自我关注功能的增强型上采样融合网络","authors":"Yan Zhou, Haibin Zhou, Yin Yang, Jianxun Li, Richard Irampaye, Dongli Wang, Zhengpeng Zhang","doi":"10.1007/s00371-024-03590-1","DOIUrl":null,"url":null,"abstract":"<p>Semantic segmentation is an essential aspect of many computer vision tasks. Self-attention (SA)-based deep learning methods have shown impressive results in semantic segmentation by capturing long-range dependencies and contextual information. However, the standard SA module has high computational complexity, which limits its use in resource-constrained scenarios. This paper proposes a novel LUNet to improve semantic segmentation performance while addressing the computational challenges of SA. The lightweight self-attention plus (LSA++) module is introduced as a lightweight and efficient variant of the SA module. LSA++ uses compact feature representation and local position embedding to significantly reduce computational complexity while surpassing the accuracy of the standard SA module. Furthermore, to address the loss of edge details during decoding, we propose the enhanced upsampling fusion module (EUP-FM). This module comprises an enhanced upsampling module and a semantic vector-guided fusion mechanism. EUP-FM effectively recovers edge information and improves the precision of the segmentation map. Comprehensive experiments on PASCAL VOC 2012, Cityscapes, COCO, and SegPC 2021 demonstrate that LUNet outperforms all compared methods. It achieves superior runtime performance and accurate segmentation with excellent model generalization ability. The code is available at https://github.com/hbzhou530/LUNet.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation\",\"authors\":\"Yan Zhou, Haibin Zhou, Yin Yang, Jianxun Li, Richard Irampaye, Dongli Wang, Zhengpeng Zhang\",\"doi\":\"10.1007/s00371-024-03590-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Semantic segmentation is an essential aspect of many computer vision tasks. Self-attention (SA)-based deep learning methods have shown impressive results in semantic segmentation by capturing long-range dependencies and contextual information. However, the standard SA module has high computational complexity, which limits its use in resource-constrained scenarios. This paper proposes a novel LUNet to improve semantic segmentation performance while addressing the computational challenges of SA. The lightweight self-attention plus (LSA++) module is introduced as a lightweight and efficient variant of the SA module. LSA++ uses compact feature representation and local position embedding to significantly reduce computational complexity while surpassing the accuracy of the standard SA module. Furthermore, to address the loss of edge details during decoding, we propose the enhanced upsampling fusion module (EUP-FM). This module comprises an enhanced upsampling module and a semantic vector-guided fusion mechanism. EUP-FM effectively recovers edge information and improves the precision of the segmentation map. Comprehensive experiments on PASCAL VOC 2012, Cityscapes, COCO, and SegPC 2021 demonstrate that LUNet outperforms all compared methods. It achieves superior runtime performance and accurate segmentation with excellent model generalization ability. The code is available at https://github.com/hbzhou530/LUNet.</p>\",\"PeriodicalId\":501186,\"journal\":{\"name\":\"The Visual Computer\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Visual Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00371-024-03590-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03590-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语义分割是许多计算机视觉任务的一个重要方面。基于自我注意(SA)的深度学习方法通过捕捉长距离依赖关系和上下文信息,在语义分割方面取得了令人瞩目的成果。然而,标准的 SA 模块具有很高的计算复杂度,这限制了它在资源受限场景中的应用。本文提出了一种新型 LUNet,以提高语义分割性能,同时解决 SA 的计算难题。作为 SA 模块的一个轻量级高效变体,本文引入了轻量级自注意加(LSA++)模块。LSA++ 使用紧凑的特征表示和局部位置嵌入,大大降低了计算复杂度,同时超越了标准 SA 模块的精度。此外,为了解决解码过程中边缘细节丢失的问题,我们提出了增强型上采样融合模块(EUP-FM)。该模块由增强型上采样模块和语义向量引导的融合机制组成。EUP-FM 能有效恢复边缘信息,提高分割图的精度。在 PASCAL VOC 2012、Cityscapes、COCO 和 SegPC 2021 上进行的综合实验表明,LUNet 优于所有比较方法。它实现了卓越的运行性能和精确的分割,并具有出色的模型泛化能力。代码见 https://github.com/hbzhou530/LUNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation

Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation

Semantic segmentation is an essential aspect of many computer vision tasks. Self-attention (SA)-based deep learning methods have shown impressive results in semantic segmentation by capturing long-range dependencies and contextual information. However, the standard SA module has high computational complexity, which limits its use in resource-constrained scenarios. This paper proposes a novel LUNet to improve semantic segmentation performance while addressing the computational challenges of SA. The lightweight self-attention plus (LSA++) module is introduced as a lightweight and efficient variant of the SA module. LSA++ uses compact feature representation and local position embedding to significantly reduce computational complexity while surpassing the accuracy of the standard SA module. Furthermore, to address the loss of edge details during decoding, we propose the enhanced upsampling fusion module (EUP-FM). This module comprises an enhanced upsampling module and a semantic vector-guided fusion mechanism. EUP-FM effectively recovers edge information and improves the precision of the segmentation map. Comprehensive experiments on PASCAL VOC 2012, Cityscapes, COCO, and SegPC 2021 demonstrate that LUNet outperforms all compared methods. It achieves superior runtime performance and accurate segmentation with excellent model generalization ability. The code is available at https://github.com/hbzhou530/LUNet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信