{"title":"狩猎蛋白肽序列的微小差异对其与蔗糖和树胶糖相互作用的影响:硅学研究","authors":"Inna, Ermilova, Linnea, Ögren, Olivia, Borg, Maria, Weber, Elinor, Einarsson, Erik, Podda Grahn, Jan, Swenson","doi":"10.26434/chemrxiv-2024-5dk2f","DOIUrl":null,"url":null,"abstract":"In this work the behavior of two Huntingtin (Htt) peptides in mixtures with water and either sucrose or trehalose were investigated by classical molecular dynamics (MD) simulations. Structures of those peptides are listed in the Protein Databank as 2LD2 (Biophys. J., 2013, 105, 699-710) and 6N8C (Proc. Natl. Acad. Sci., 2019, 116, 9, 3562-3571). The principal difference between those peptides is in their C- and N-terminals. Since Huntington’s disease is related to the aggregation of proteins containing consecutive polyglutamine in their amino acid chains, the aim was to investigate if smaller amounts of disaccharides could reduce aggregation of two peptides from the Htt protein. Computational results revealed that both sugars alter the secondary structures of peptides and decrease the total number of contacts (the sum of hydrophobic contacts and hydrogen bonds) between these biomolecules. However, regarding only the number of hydrogen bonds, the disaccharides reduced this value for peptide-peptide interactions for 6N8C, while for 2LD2 sucrose and trehalose instead promoted an increase of this number. Such a difference in behaviors of peptides could be related to dissimilarities in their sequences, pointing out the importance to consider amino-acid residues in C- and N-terminal when developing drugs. Furthermore, both disaccharides demonstrated abilities to slow down the dynamics of simulated mixtures, which was concluded from rotational correlation and self-intermediate scattering functions. Amino-acid residues MET(1), GLU(5), LYS(6), LYS(9), GLU(12), LYS(15), PHE(17) and GLN(18) are identified as the main candidate amino acids involved in interpeptide binding and binding to disaccharides, where the glutamic acid residues (GLU(5) and GLU(12)) had the highest number of hydrogen bonds with sucrose and trehalose.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of minor differences in sequences of huntingtin peptides on their interactions with sucrose and trehalose: in silico investigation\",\"authors\":\"Inna, Ermilova, Linnea, Ögren, Olivia, Borg, Maria, Weber, Elinor, Einarsson, Erik, Podda Grahn, Jan, Swenson\",\"doi\":\"10.26434/chemrxiv-2024-5dk2f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work the behavior of two Huntingtin (Htt) peptides in mixtures with water and either sucrose or trehalose were investigated by classical molecular dynamics (MD) simulations. Structures of those peptides are listed in the Protein Databank as 2LD2 (Biophys. J., 2013, 105, 699-710) and 6N8C (Proc. Natl. Acad. Sci., 2019, 116, 9, 3562-3571). The principal difference between those peptides is in their C- and N-terminals. Since Huntington’s disease is related to the aggregation of proteins containing consecutive polyglutamine in their amino acid chains, the aim was to investigate if smaller amounts of disaccharides could reduce aggregation of two peptides from the Htt protein. Computational results revealed that both sugars alter the secondary structures of peptides and decrease the total number of contacts (the sum of hydrophobic contacts and hydrogen bonds) between these biomolecules. However, regarding only the number of hydrogen bonds, the disaccharides reduced this value for peptide-peptide interactions for 6N8C, while for 2LD2 sucrose and trehalose instead promoted an increase of this number. Such a difference in behaviors of peptides could be related to dissimilarities in their sequences, pointing out the importance to consider amino-acid residues in C- and N-terminal when developing drugs. Furthermore, both disaccharides demonstrated abilities to slow down the dynamics of simulated mixtures, which was concluded from rotational correlation and self-intermediate scattering functions. Amino-acid residues MET(1), GLU(5), LYS(6), LYS(9), GLU(12), LYS(15), PHE(17) and GLN(18) are identified as the main candidate amino acids involved in interpeptide binding and binding to disaccharides, where the glutamic acid residues (GLU(5) and GLU(12)) had the highest number of hydrogen bonds with sucrose and trehalose.\",\"PeriodicalId\":9813,\"journal\":{\"name\":\"ChemRxiv\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv-2024-5dk2f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-5dk2f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们通过经典分子动力学(MD)模拟研究了两种亨廷汀(Htt)多肽在与水、蔗糖或曲哈葡萄糖的混合物中的行为。这些多肽的结构已被列入蛋白质数据库,分别为 2LD2 (Biophys. J., 2013, 105, 699-710) 和 6N8C (Proc. Natl. Acad. Sci., 2019, 116, 9, 3562-3571)。这些肽的主要区别在于它们的 C 端和 N 端。由于亨廷顿氏病与氨基酸链中含有连续多聚谷氨酰胺的蛋白质的聚集有关,因此我们的目的是研究较少量的二糖是否能减少 Htt 蛋白中两种肽的聚集。计算结果显示,这两种糖都会改变肽的二级结构,并减少这些生物大分子之间的接触总数(疏水接触和氢键的总和)。然而,仅就氢键的数量而言,对于 6N8C 而言,二糖降低了肽与肽之间相互作用的这一数值,而对于 2LD2 而言,蔗糖和曲哈糖反而促进了这一数值的增加。肽的这种行为差异可能与它们的序列不同有关,这表明在开发药物时考虑 C 端和 N 端氨基酸残基的重要性。此外,两种二糖都显示出减缓模拟混合物动力学的能力,这是从旋转相关性和自中间散射函数得出的结论。氨基酸残基 MET(1)、GLU(5)、LYS(6)、LYS(9)、GLU(12)、LYS(15)、PHE(17) 和 GLN(18) 被确定为参与肽间结合和与二糖结合的主要候选氨基酸,其中谷氨酸残基(GLU(5) 和 GLU(12))与蔗糖和树海糖的氢键数量最多。
Effect of minor differences in sequences of huntingtin peptides on their interactions with sucrose and trehalose: in silico investigation
In this work the behavior of two Huntingtin (Htt) peptides in mixtures with water and either sucrose or trehalose were investigated by classical molecular dynamics (MD) simulations. Structures of those peptides are listed in the Protein Databank as 2LD2 (Biophys. J., 2013, 105, 699-710) and 6N8C (Proc. Natl. Acad. Sci., 2019, 116, 9, 3562-3571). The principal difference between those peptides is in their C- and N-terminals. Since Huntington’s disease is related to the aggregation of proteins containing consecutive polyglutamine in their amino acid chains, the aim was to investigate if smaller amounts of disaccharides could reduce aggregation of two peptides from the Htt protein. Computational results revealed that both sugars alter the secondary structures of peptides and decrease the total number of contacts (the sum of hydrophobic contacts and hydrogen bonds) between these biomolecules. However, regarding only the number of hydrogen bonds, the disaccharides reduced this value for peptide-peptide interactions for 6N8C, while for 2LD2 sucrose and trehalose instead promoted an increase of this number. Such a difference in behaviors of peptides could be related to dissimilarities in their sequences, pointing out the importance to consider amino-acid residues in C- and N-terminal when developing drugs. Furthermore, both disaccharides demonstrated abilities to slow down the dynamics of simulated mixtures, which was concluded from rotational correlation and self-intermediate scattering functions. Amino-acid residues MET(1), GLU(5), LYS(6), LYS(9), GLU(12), LYS(15), PHE(17) and GLN(18) are identified as the main candidate amino acids involved in interpeptide binding and binding to disaccharides, where the glutamic acid residues (GLU(5) and GLU(12)) had the highest number of hydrogen bonds with sucrose and trehalose.