长分子线与水的自电离

Yinan, Xu, Samuel, Varner, Yezhi, Jin, Gustavo, Pérez-Lemus, Joan, Montes de Oca, Zhen-Gang, Wang, Juan, de Pablo
{"title":"长分子线与水的自电离","authors":"Yinan, Xu, Samuel, Varner, Yezhi, Jin, Gustavo, Pérez-Lemus, Joan, Montes de Oca, Zhen-Gang, Wang, Juan, de Pablo","doi":"10.26434/chemrxiv-2024-f9bv7","DOIUrl":null,"url":null,"abstract":"Water auto-ionization is critical in a wide range of chemical, biological, physical, and industrial processes. In this work, we describe a series of hitherto unknown collective molecular processes leading to auto-ionization. Specifically, by combining machine-learned interatomic potentials and spectral adaptive biasing force techniques, we determine the relevant free energy landscape of water auto-ionization. At ambient conditions, the free energy profile reveals two distinct saddle points, each leading to the formation of three- and four-member water wires. The wires feature an individual Zundel ion and a proton diffusion-like transition state, respectively. At elevated temperatures, the auto-ionization process exhibits a more concerted hydrogen transfer mechanism and reveals an alternative pathway involving the synchronous diffusion of Zundel ion pairs, with the ion pair corresponding to an energetic local minimum on the free energy surface. These findings help resolve long-standing conflicting views of the mechanism of water auto-ionization and provide new avenues for the study of proton behavior in different aqueous environments.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long Molecular Wires and the Auto-ionization of Water\",\"authors\":\"Yinan, Xu, Samuel, Varner, Yezhi, Jin, Gustavo, Pérez-Lemus, Joan, Montes de Oca, Zhen-Gang, Wang, Juan, de Pablo\",\"doi\":\"10.26434/chemrxiv-2024-f9bv7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water auto-ionization is critical in a wide range of chemical, biological, physical, and industrial processes. In this work, we describe a series of hitherto unknown collective molecular processes leading to auto-ionization. Specifically, by combining machine-learned interatomic potentials and spectral adaptive biasing force techniques, we determine the relevant free energy landscape of water auto-ionization. At ambient conditions, the free energy profile reveals two distinct saddle points, each leading to the formation of three- and four-member water wires. The wires feature an individual Zundel ion and a proton diffusion-like transition state, respectively. At elevated temperatures, the auto-ionization process exhibits a more concerted hydrogen transfer mechanism and reveals an alternative pathway involving the synchronous diffusion of Zundel ion pairs, with the ion pair corresponding to an energetic local minimum on the free energy surface. These findings help resolve long-standing conflicting views of the mechanism of water auto-ionization and provide new avenues for the study of proton behavior in different aqueous environments.\",\"PeriodicalId\":9813,\"journal\":{\"name\":\"ChemRxiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv-2024-f9bv7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-f9bv7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水的自电离在各种化学、生物、物理和工业过程中都至关重要。在这项工作中,我们描述了一系列迄今未知的导致自电离的集体分子过程。具体来说,通过结合机器学习的原子间势能和光谱自适应偏置力技术,我们确定了水自电离的相关自由能谱。在环境条件下,自由能谱显示出两个截然不同的鞍点,每个鞍点都会导致三元和四元水丝的形成。水丝分别具有一个独立的尊德尔离子和一个类似质子扩散的过渡态。在高温条件下,自电离过程表现出一种更协调的氢转移机制,并揭示了另一种涉及Zundel离子对同步扩散的途径,离子对对应于自由能表面上的能量局部最小值。这些发现有助于解决长期以来关于水自电离机制的观点冲突,并为研究质子在不同水环境中的行为提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long Molecular Wires and the Auto-ionization of Water
Water auto-ionization is critical in a wide range of chemical, biological, physical, and industrial processes. In this work, we describe a series of hitherto unknown collective molecular processes leading to auto-ionization. Specifically, by combining machine-learned interatomic potentials and spectral adaptive biasing force techniques, we determine the relevant free energy landscape of water auto-ionization. At ambient conditions, the free energy profile reveals two distinct saddle points, each leading to the formation of three- and four-member water wires. The wires feature an individual Zundel ion and a proton diffusion-like transition state, respectively. At elevated temperatures, the auto-ionization process exhibits a more concerted hydrogen transfer mechanism and reveals an alternative pathway involving the synchronous diffusion of Zundel ion pairs, with the ion pair corresponding to an energetic local minimum on the free energy surface. These findings help resolve long-standing conflicting views of the mechanism of water auto-ionization and provide new avenues for the study of proton behavior in different aqueous environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信