GOCIA:用于团簇、界面和吸附剂的大规范全局优化器

Zisheng, Zhang, Winston, Gee, Robert H., Lavroff, Anastassia N., Alexandrova
{"title":"GOCIA:用于团簇、界面和吸附剂的大规范全局优化器","authors":"Zisheng, Zhang, Winston, Gee, Robert H., Lavroff, Anastassia N., Alexandrova","doi":"10.26434/chemrxiv-2024-cw1tt","DOIUrl":null,"url":null,"abstract":"Restructuring of surfaces and interfaces underlie the activation and/or deactivation of a wide spectrum of heterogeneous catalysts and functional materials. The statistical ensemble representation can provide unique atomistic insights into this fluxional and metastable realm, but constructing the ensemble is very challenging, especially for the systems with off-stoichiometric reconstruction and varying coverage of mixed adsorbates. Here we report GOCIA, a general-purpose global optimizer for exploring the chemical space of these systems. It features the grand canonical genetic algorithm (GCGA), which bases the target function on the grand potential and evolves across the compositional space, as well as many useful functionalities and implementation details. GOCIA has been applied to various systems in catalysis, from cluster to surfaces, and from thermal to electro-catalysis.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GOCIA: grand canonical Global Optimizer for Clusters, Interfaces, and Adsorbates\",\"authors\":\"Zisheng, Zhang, Winston, Gee, Robert H., Lavroff, Anastassia N., Alexandrova\",\"doi\":\"10.26434/chemrxiv-2024-cw1tt\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Restructuring of surfaces and interfaces underlie the activation and/or deactivation of a wide spectrum of heterogeneous catalysts and functional materials. The statistical ensemble representation can provide unique atomistic insights into this fluxional and metastable realm, but constructing the ensemble is very challenging, especially for the systems with off-stoichiometric reconstruction and varying coverage of mixed adsorbates. Here we report GOCIA, a general-purpose global optimizer for exploring the chemical space of these systems. It features the grand canonical genetic algorithm (GCGA), which bases the target function on the grand potential and evolves across the compositional space, as well as many useful functionalities and implementation details. GOCIA has been applied to various systems in catalysis, from cluster to surfaces, and from thermal to electro-catalysis.\",\"PeriodicalId\":9813,\"journal\":{\"name\":\"ChemRxiv\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv-2024-cw1tt\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-cw1tt","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表面和界面的重组是多种异质催化剂和功能材料活化和/或失活的基础。统计集合表示法可为这一流动和蜕变领域提供独特的原子洞察力,但构建集合非常具有挑战性,尤其是对于具有非计量重构和不同混合吸附剂覆盖率的系统。在此,我们报告了用于探索这些体系化学空间的通用全局优化器 GOCIA。它采用大规范遗传算法(GCGA),将目标函数建立在大电势上,并在整个组成空间中演化,同时还提供了许多有用的功能和实施细节。GOCIA 已被应用于催化领域的各种系统,从团簇到表面,从热催化到电催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GOCIA: grand canonical Global Optimizer for Clusters, Interfaces, and Adsorbates
Restructuring of surfaces and interfaces underlie the activation and/or deactivation of a wide spectrum of heterogeneous catalysts and functional materials. The statistical ensemble representation can provide unique atomistic insights into this fluxional and metastable realm, but constructing the ensemble is very challenging, especially for the systems with off-stoichiometric reconstruction and varying coverage of mixed adsorbates. Here we report GOCIA, a general-purpose global optimizer for exploring the chemical space of these systems. It features the grand canonical genetic algorithm (GCGA), which bases the target function on the grand potential and evolves across the compositional space, as well as many useful functionalities and implementation details. GOCIA has been applied to various systems in catalysis, from cluster to surfaces, and from thermal to electro-catalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信