关于吸积细丝中核心的形成及其周围环境的影响

S. V. Anathpindika, J. Di Francesco
{"title":"关于吸积细丝中核心的形成及其周围环境的影响","authors":"S. V. Anathpindika, J. Di Francesco","doi":"arxiv-2409.09431","DOIUrl":null,"url":null,"abstract":"Recent numerical works, including ours, lend credence to the thesis that\nambient environment, i.e., external pressure, affects star-forming ability of\nclouds & filaments. In continuation with our series of papers on the subject we\nexplore this thesis further by developing hydrodynamic simulations of accreting\nfilaments confined by external pressures in the range $10^{4 -7}$ $K\\ cm^{-3}$.\nOur findings are-\\textbf{(i)} irrespective of linemass, filaments fragment to\nyield spheroidal cores. Initially sub-critical filaments in low to intermediate\nexternal pressure environments form broad cores which suggests, weakly\nself-gravitating filaments must fragment via \\emph{collect-and-collapse} mode\nto form broad cores. Transcritical filaments, by contrast, become susceptible\nto Jeans-type instability and form pinched cores; \\textbf{(ii)} ambient\nenvironment bears upon physical properties of filaments including their {\\small\nFWHM$_{fil}$}. Only those initially suffused with subsonic turbulence in Solar\nNeighbourhood-like environs, however, have {\\small FWHM$_{fil}$}$\\sim$ 0.1\n$pc$. In high pressure environs they not only have smaller widths, but become\nseverely eviscerated. On the contrary, filaments suffused with initially\nsupersonic turbulence are typically broader; \\textbf{(iii)} quasi-oscillatory\nnature of velocity gradients is ubiquitous along filament lengths and its\nmagnitude generally increases with increasing pressure. The periodicity of the\nvelocity gradients approximately matches the fragmentation lengthscale of\nfilaments; \\textbf{(iv)} oscillatory features of the radial component of the\nvelocity gradient are a unreliable proxy for detecting signatures of accretion\nonto filaments; \\textbf{(v)} filaments at either extreme of external pressure\nare inefficient at cycling gas into the dense phase which could reconcile the\ncorresponding inefficiency of star-formation in such environments.","PeriodicalId":501187,"journal":{"name":"arXiv - PHYS - Astrophysics of Galaxies","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the formation of cores in accreting filaments and the impact of ambient environment on it\",\"authors\":\"S. V. Anathpindika, J. Di Francesco\",\"doi\":\"arxiv-2409.09431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent numerical works, including ours, lend credence to the thesis that\\nambient environment, i.e., external pressure, affects star-forming ability of\\nclouds & filaments. In continuation with our series of papers on the subject we\\nexplore this thesis further by developing hydrodynamic simulations of accreting\\nfilaments confined by external pressures in the range $10^{4 -7}$ $K\\\\ cm^{-3}$.\\nOur findings are-\\\\textbf{(i)} irrespective of linemass, filaments fragment to\\nyield spheroidal cores. Initially sub-critical filaments in low to intermediate\\nexternal pressure environments form broad cores which suggests, weakly\\nself-gravitating filaments must fragment via \\\\emph{collect-and-collapse} mode\\nto form broad cores. Transcritical filaments, by contrast, become susceptible\\nto Jeans-type instability and form pinched cores; \\\\textbf{(ii)} ambient\\nenvironment bears upon physical properties of filaments including their {\\\\small\\nFWHM$_{fil}$}. Only those initially suffused with subsonic turbulence in Solar\\nNeighbourhood-like environs, however, have {\\\\small FWHM$_{fil}$}$\\\\sim$ 0.1\\n$pc$. In high pressure environs they not only have smaller widths, but become\\nseverely eviscerated. On the contrary, filaments suffused with initially\\nsupersonic turbulence are typically broader; \\\\textbf{(iii)} quasi-oscillatory\\nnature of velocity gradients is ubiquitous along filament lengths and its\\nmagnitude generally increases with increasing pressure. The periodicity of the\\nvelocity gradients approximately matches the fragmentation lengthscale of\\nfilaments; \\\\textbf{(iv)} oscillatory features of the radial component of the\\nvelocity gradient are a unreliable proxy for detecting signatures of accretion\\nonto filaments; \\\\textbf{(v)} filaments at either extreme of external pressure\\nare inefficient at cycling gas into the dense phase which could reconcile the\\ncorresponding inefficiency of star-formation in such environments.\",\"PeriodicalId\":501187,\"journal\":{\"name\":\"arXiv - PHYS - Astrophysics of Galaxies\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Astrophysics of Galaxies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的数值研究,包括我们的研究,证实了环境,即外部压力,会影响云和丝的恒星形成能力这一论点。为了继续我们在这个问题上的系列论文,我们进一步探讨了这个论题,对被外部压力限制在$10^{4 -7}$ $K cm^{-3}$范围内的增生细丝进行了流体力学模拟。在低到中等外压环境中,亚临界丝最初会形成宽大的核心,这表明,弱自引力丝必须通过 "收集-塌缩 "模式碎裂,才能形成宽大的核心。与此相反,超临界丝状物则容易受到 "让式 "不稳定性的影响而形成 "掐状 "内核;(textbf{(ii)}环境会影响丝状物的物理特性,包括它们的{\smallFWHM$_{fil}$}。然而,只有那些最初在类似于太阳邻域的环境中充满亚音速湍流的细丝才具有{\小FWHM$_{fil}$}$sim$ 0.1$pc$。在高压环境中,它们的宽度不仅更小,而且会被严重撕裂。相反,充满初始超音速湍流的细丝通常更宽;沿细丝长度方向,速度梯度的准振荡性质无处不在,而且其幅度通常随着压力的增加而增大。textbf{(iv)}速度梯度径向分量的振荡特征是探测长丝吸积特征的不可靠替代物;\textbf{(v)}长丝在外部压力的两个极端都不能有效地将气体循环到致密阶段,这可能与这种环境下恒星形成的低效率相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the formation of cores in accreting filaments and the impact of ambient environment on it
Recent numerical works, including ours, lend credence to the thesis that ambient environment, i.e., external pressure, affects star-forming ability of clouds & filaments. In continuation with our series of papers on the subject we explore this thesis further by developing hydrodynamic simulations of accreting filaments confined by external pressures in the range $10^{4 -7}$ $K\ cm^{-3}$. Our findings are-\textbf{(i)} irrespective of linemass, filaments fragment to yield spheroidal cores. Initially sub-critical filaments in low to intermediate external pressure environments form broad cores which suggests, weakly self-gravitating filaments must fragment via \emph{collect-and-collapse} mode to form broad cores. Transcritical filaments, by contrast, become susceptible to Jeans-type instability and form pinched cores; \textbf{(ii)} ambient environment bears upon physical properties of filaments including their {\small FWHM$_{fil}$}. Only those initially suffused with subsonic turbulence in Solar Neighbourhood-like environs, however, have {\small FWHM$_{fil}$}$\sim$ 0.1 $pc$. In high pressure environs they not only have smaller widths, but become severely eviscerated. On the contrary, filaments suffused with initially supersonic turbulence are typically broader; \textbf{(iii)} quasi-oscillatory nature of velocity gradients is ubiquitous along filament lengths and its magnitude generally increases with increasing pressure. The periodicity of the velocity gradients approximately matches the fragmentation lengthscale of filaments; \textbf{(iv)} oscillatory features of the radial component of the velocity gradient are a unreliable proxy for detecting signatures of accretion onto filaments; \textbf{(v)} filaments at either extreme of external pressure are inefficient at cycling gas into the dense phase which could reconcile the corresponding inefficiency of star-formation in such environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信