双功能光催化剂在金属光氧 C-O 偶联中显示出近似增强的催化活性

Luca, Pignataro, Luigi, Dolcini, Andrea, Solida, Daniele, Lavelli, Andrés Mauricio, Hidalgo-Núñez, Tommaso, Gandini, Matthieu, Fornara, Alessandro, Colella, Alberto, Bossi, Marta, Penconi, Daniele, Fiorito, Cesare, Gennari, Alberto, Dal Corso
{"title":"双功能光催化剂在金属光氧 C-O 偶联中显示出近似增强的催化活性","authors":"Luca, Pignataro, Luigi, Dolcini, Andrea, Solida, Daniele, Lavelli, Andrés Mauricio, Hidalgo-Núñez, Tommaso, Gandini, Matthieu, Fornara, Alessandro, Colella, Alberto, Bossi, Marta, Penconi, Daniele, Fiorito, Cesare, Gennari, Alberto, Dal Corso","doi":"10.26434/chemrxiv-2024-qgsl2","DOIUrl":null,"url":null,"abstract":"Dual catalytic reactions may be made more effective through an improved integration of the catalytic cycles achieved using bifunctional catalysts. Herein we describe new bifunctional photocatalysts consisting of a photoactive donor-acceptor cyanoarene unit linked to a bipyridine ligand moiety that can bind transition metals. The bifunctional photocatalysts were synthesized in 3-5 steps form commercially available compounds and fully characterized in terms of photophysical properties, which are strongly affected by the type of linkage used (C vs. O) to connect the cyanoarene core to the ligand. Catalytic tests carried out in the Nicatalyzed C-O cross-coupling of alcohols to aryl bromides promoted by visible light have shown that the bifunctional systems are more active than the corresponding ‘dual catalytic systems’ (i.e., not covalently bound), taking advantage of the proximity between the two catalytic moieties (Ni-complex and photocatalyst). The best bifunctional dyes were tested with several alcohols and aryl halides, giving good yields at low catalytic loading (0.5-2 mol%).","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifunctional photocatalysts display proximity-enhanced catalytic activity in metallaphotoredox C–O coupling\",\"authors\":\"Luca, Pignataro, Luigi, Dolcini, Andrea, Solida, Daniele, Lavelli, Andrés Mauricio, Hidalgo-Núñez, Tommaso, Gandini, Matthieu, Fornara, Alessandro, Colella, Alberto, Bossi, Marta, Penconi, Daniele, Fiorito, Cesare, Gennari, Alberto, Dal Corso\",\"doi\":\"10.26434/chemrxiv-2024-qgsl2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual catalytic reactions may be made more effective through an improved integration of the catalytic cycles achieved using bifunctional catalysts. Herein we describe new bifunctional photocatalysts consisting of a photoactive donor-acceptor cyanoarene unit linked to a bipyridine ligand moiety that can bind transition metals. The bifunctional photocatalysts were synthesized in 3-5 steps form commercially available compounds and fully characterized in terms of photophysical properties, which are strongly affected by the type of linkage used (C vs. O) to connect the cyanoarene core to the ligand. Catalytic tests carried out in the Nicatalyzed C-O cross-coupling of alcohols to aryl bromides promoted by visible light have shown that the bifunctional systems are more active than the corresponding ‘dual catalytic systems’ (i.e., not covalently bound), taking advantage of the proximity between the two catalytic moieties (Ni-complex and photocatalyst). The best bifunctional dyes were tested with several alcohols and aryl halides, giving good yields at low catalytic loading (0.5-2 mol%).\",\"PeriodicalId\":9813,\"journal\":{\"name\":\"ChemRxiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv-2024-qgsl2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-qgsl2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过使用双功能催化剂改进催化循环的整合,可使双催化反应更加有效。在此,我们介绍了新型双功能光催化剂,这种催化剂由一个光活性供体-受体氰基烯烃单元与一个可结合过渡金属的双吡啶配体连接而成。这种双功能光催化剂是以市场上可买到的化合物为基础,通过 3-5 个步骤合成的,其光物理性质受到连接氰基烯烃核心与配体的连接方式(C 与 O)的强烈影响。在可见光的促进下,在醇与芳基溴的尼催化 C-O 交叉偶联反应中进行的催化测试表明,利用两个催化分子(镍络合物和光催化剂)之间的接近性,双功能系统比相应的 "双催化系统"(即非共价结合)更活跃。我们用几种醇和芳基卤化物对最佳双功能染料进行了测试,结果表明,在低催化负载(0.5-2 摩尔%)条件下就能获得良好的产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifunctional photocatalysts display proximity-enhanced catalytic activity in metallaphotoredox C–O coupling
Dual catalytic reactions may be made more effective through an improved integration of the catalytic cycles achieved using bifunctional catalysts. Herein we describe new bifunctional photocatalysts consisting of a photoactive donor-acceptor cyanoarene unit linked to a bipyridine ligand moiety that can bind transition metals. The bifunctional photocatalysts were synthesized in 3-5 steps form commercially available compounds and fully characterized in terms of photophysical properties, which are strongly affected by the type of linkage used (C vs. O) to connect the cyanoarene core to the ligand. Catalytic tests carried out in the Nicatalyzed C-O cross-coupling of alcohols to aryl bromides promoted by visible light have shown that the bifunctional systems are more active than the corresponding ‘dual catalytic systems’ (i.e., not covalently bound), taking advantage of the proximity between the two catalytic moieties (Ni-complex and photocatalyst). The best bifunctional dyes were tested with several alcohols and aryl halides, giving good yields at low catalytic loading (0.5-2 mol%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信