{"title":"优化基于镧系元素的金属有机框架的自旋量子比特性能","authors":"Lei, Sun, Xiya, Du","doi":"10.26434/chemrxiv-2024-zzs16","DOIUrl":null,"url":null,"abstract":"Lanthanide-based spin qubits are intriguing candidates for high-fidelity quantum memories owing to their spin-optical interfaces. Metal−organic frameworks (MOFs) offer promising solid-state platforms to host lanthanide ions because their bottom-up synthesis enables rational optimization of both spin coherence and luminescence. Here, we incorporated Nd3+ and Gd3+ into a La3+-based MOF with various doping levels and examined their qubit performance including the spin relaxation time (T1) and phase memory time (Tm). Both Nd3+ and Gd3+ behave as spin qubits with T1 exceeding 1 ms and Tm approaching 2 μs at 3.2 K under low doping levels. Variable-temperature spin dynamic studies unveiled spin relaxation and decoherence mechanisms, highlighting critical roles of spin-phonon coupling and spin-spin dipolar coupling. Accordingly, reducing the spin concentration, spin-orbit coupling strength, and ground spin state improves the qubit performance of lanthanide-based MOFs. These optimization strategies serve as guidelines for future development of solid-state lanthanide qubits targeting quantum information technologies.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing spin qubit performance of lanthanide-based metal−organic frameworks\",\"authors\":\"Lei, Sun, Xiya, Du\",\"doi\":\"10.26434/chemrxiv-2024-zzs16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lanthanide-based spin qubits are intriguing candidates for high-fidelity quantum memories owing to their spin-optical interfaces. Metal−organic frameworks (MOFs) offer promising solid-state platforms to host lanthanide ions because their bottom-up synthesis enables rational optimization of both spin coherence and luminescence. Here, we incorporated Nd3+ and Gd3+ into a La3+-based MOF with various doping levels and examined their qubit performance including the spin relaxation time (T1) and phase memory time (Tm). Both Nd3+ and Gd3+ behave as spin qubits with T1 exceeding 1 ms and Tm approaching 2 μs at 3.2 K under low doping levels. Variable-temperature spin dynamic studies unveiled spin relaxation and decoherence mechanisms, highlighting critical roles of spin-phonon coupling and spin-spin dipolar coupling. Accordingly, reducing the spin concentration, spin-orbit coupling strength, and ground spin state improves the qubit performance of lanthanide-based MOFs. These optimization strategies serve as guidelines for future development of solid-state lanthanide qubits targeting quantum information technologies.\",\"PeriodicalId\":9813,\"journal\":{\"name\":\"ChemRxiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv-2024-zzs16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-zzs16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing spin qubit performance of lanthanide-based metal−organic frameworks
Lanthanide-based spin qubits are intriguing candidates for high-fidelity quantum memories owing to their spin-optical interfaces. Metal−organic frameworks (MOFs) offer promising solid-state platforms to host lanthanide ions because their bottom-up synthesis enables rational optimization of both spin coherence and luminescence. Here, we incorporated Nd3+ and Gd3+ into a La3+-based MOF with various doping levels and examined their qubit performance including the spin relaxation time (T1) and phase memory time (Tm). Both Nd3+ and Gd3+ behave as spin qubits with T1 exceeding 1 ms and Tm approaching 2 μs at 3.2 K under low doping levels. Variable-temperature spin dynamic studies unveiled spin relaxation and decoherence mechanisms, highlighting critical roles of spin-phonon coupling and spin-spin dipolar coupling. Accordingly, reducing the spin concentration, spin-orbit coupling strength, and ground spin state improves the qubit performance of lanthanide-based MOFs. These optimization strategies serve as guidelines for future development of solid-state lanthanide qubits targeting quantum information technologies.