{"title":"适用于分布式多 GPU 架构的高效 RI-MP2 算法","authors":"Giuseppe Maria Junior, Barca, Calum, Snowdon","doi":"10.26434/chemrxiv-2024-9091h-v2","DOIUrl":null,"url":null,"abstract":"Second-order Møller-Plesset perturbation theory (MP2) using the Resolution of the Identity approximation (RI-MP2) is a widely used method for computing molecular energies beyond the Hartree-Fock mean-field approximation. However, its high computational cost and lack of efficient algorithms for modern supercomputing architectures limit its applicability to large molecules. In this paper, we present the first distributed-memory many-GPU RI-MP2 algorithm explicitly designed to utilize hundreds of GPU accelerators for every step of the computation. Our novel algorithm achieves near-peak performance on GPU-based supercomputers through the development of a distributed memory algorithm for forming RI-MP2 intermediate tensors with zero inter-node communication, except for a single O(N^2) asynchronous broadcast, and a distributed memory algorithm for the O(N^5) energy reduction step, capable of sustaining near-peak performance on clusters with several hundred GPUs. Comparative analysis shows our implementation outperforms state-of-the-art quantum chemistry software by over 3.5 times in speed while achieving an eightfold reduction in computational power consumption. Benchmarking on the Perlmutter supercomputer, our algorithm achieves 11.8 PFLOP/s (83% of peak performance) performing and the RI-MP2 energy calculation on a 314-water cluster with 7,850 primary and 30,144 auxiliary basis functions in 4 minutes on 180 nodes and 720 A100 GPUs. This performance represents a substantial improvement over traditional CPU-based methods, demonstrating significant time-to-solution and power consumption benefits of leveraging modern GPU-accelerated computing environments for quantum chemistry calculations.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient RI-MP2 Algorithm for Distributed Many-GPU Architectures\",\"authors\":\"Giuseppe Maria Junior, Barca, Calum, Snowdon\",\"doi\":\"10.26434/chemrxiv-2024-9091h-v2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Second-order Møller-Plesset perturbation theory (MP2) using the Resolution of the Identity approximation (RI-MP2) is a widely used method for computing molecular energies beyond the Hartree-Fock mean-field approximation. However, its high computational cost and lack of efficient algorithms for modern supercomputing architectures limit its applicability to large molecules. In this paper, we present the first distributed-memory many-GPU RI-MP2 algorithm explicitly designed to utilize hundreds of GPU accelerators for every step of the computation. Our novel algorithm achieves near-peak performance on GPU-based supercomputers through the development of a distributed memory algorithm for forming RI-MP2 intermediate tensors with zero inter-node communication, except for a single O(N^2) asynchronous broadcast, and a distributed memory algorithm for the O(N^5) energy reduction step, capable of sustaining near-peak performance on clusters with several hundred GPUs. Comparative analysis shows our implementation outperforms state-of-the-art quantum chemistry software by over 3.5 times in speed while achieving an eightfold reduction in computational power consumption. Benchmarking on the Perlmutter supercomputer, our algorithm achieves 11.8 PFLOP/s (83% of peak performance) performing and the RI-MP2 energy calculation on a 314-water cluster with 7,850 primary and 30,144 auxiliary basis functions in 4 minutes on 180 nodes and 720 A100 GPUs. This performance represents a substantial improvement over traditional CPU-based methods, demonstrating significant time-to-solution and power consumption benefits of leveraging modern GPU-accelerated computing environments for quantum chemistry calculations.\",\"PeriodicalId\":9813,\"journal\":{\"name\":\"ChemRxiv\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv-2024-9091h-v2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-9091h-v2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient RI-MP2 Algorithm for Distributed Many-GPU Architectures
Second-order Møller-Plesset perturbation theory (MP2) using the Resolution of the Identity approximation (RI-MP2) is a widely used method for computing molecular energies beyond the Hartree-Fock mean-field approximation. However, its high computational cost and lack of efficient algorithms for modern supercomputing architectures limit its applicability to large molecules. In this paper, we present the first distributed-memory many-GPU RI-MP2 algorithm explicitly designed to utilize hundreds of GPU accelerators for every step of the computation. Our novel algorithm achieves near-peak performance on GPU-based supercomputers through the development of a distributed memory algorithm for forming RI-MP2 intermediate tensors with zero inter-node communication, except for a single O(N^2) asynchronous broadcast, and a distributed memory algorithm for the O(N^5) energy reduction step, capable of sustaining near-peak performance on clusters with several hundred GPUs. Comparative analysis shows our implementation outperforms state-of-the-art quantum chemistry software by over 3.5 times in speed while achieving an eightfold reduction in computational power consumption. Benchmarking on the Perlmutter supercomputer, our algorithm achieves 11.8 PFLOP/s (83% of peak performance) performing and the RI-MP2 energy calculation on a 314-water cluster with 7,850 primary and 30,144 auxiliary basis functions in 4 minutes on 180 nodes and 720 A100 GPUs. This performance represents a substantial improvement over traditional CPU-based methods, demonstrating significant time-to-solution and power consumption benefits of leveraging modern GPU-accelerated computing environments for quantum chemistry calculations.