{"title":"p 算法的可解变量","authors":"Tomasz Kowalski, Katarzyna Słomczyńska","doi":"arxiv-2409.09015","DOIUrl":null,"url":null,"abstract":"We show that for quasivarieties of p-algebras the properties of (i) having\ndecidable first-order theory and (ii) having decidable first-order theory of\nthe finite members, coincide. The only two quasivarieties with these properties\nare the trivial variety and the variety of Boolean algebras. This contrasts\nsharply, even for varieties, with the situation in Heyting algebras where\ndecidable varieties do not coincide with finitely decidable ones.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decidable varieties of p-algebras\",\"authors\":\"Tomasz Kowalski, Katarzyna Słomczyńska\",\"doi\":\"arxiv-2409.09015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for quasivarieties of p-algebras the properties of (i) having\\ndecidable first-order theory and (ii) having decidable first-order theory of\\nthe finite members, coincide. The only two quasivarieties with these properties\\nare the trivial variety and the variety of Boolean algebras. This contrasts\\nsharply, even for varieties, with the situation in Heyting algebras where\\ndecidable varieties do not coincide with finitely decidable ones.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,对于 p 矩阵的准变量,(i) 具有可判定的一阶理论和 (ii) 有限成员具有可判定的一阶理论这两个性质是重合的。唯一具有这些性质的两个类群是三元数群和布尔代数数群。这与海廷(Heyting)代数中的情况形成了鲜明的对比,即使对于代数的变种来说,可判定的变种与有限可判定的变种也不重合。
We show that for quasivarieties of p-algebras the properties of (i) having
decidable first-order theory and (ii) having decidable first-order theory of
the finite members, coincide. The only two quasivarieties with these properties
are the trivial variety and the variety of Boolean algebras. This contrasts
sharply, even for varieties, with the situation in Heyting algebras where
decidable varieties do not coincide with finitely decidable ones.