{"title":"CUL1 通过增强 ASAP1 泛素化加剧糖皮质激素诱导的骨质疏松症","authors":"Jun Wu, Weijian Ren, Jun Liu, Xizhuang Bai","doi":"10.1007/s42000-024-00599-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Glucocorticoid-induced osteoporosis is a leading secondary cause of osteoporosis. Cullin-1 (CUL1) levels are abnormally elevated in patients with osteoporosis, but the underlying mechanism remains unclear. The purpose of this study was to elucidate the mechanism of action of CUL1 in a glucocorticoid (dexamethasone, Dex)-induced osteoporosis model.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>C57BL/6J mice were intraperitoneally injected with Dex to establish an osteoporosis model. Mouse femur bone injury and bone formation were detected using hematoxylin-eosin or Masson staining. Apoptosis and cell cycle distribution were determined by flow cytometry. Alkaline phosphatase (ALP) activity and calcified nodules were monitored using ALP and Alizarin Red S staining. The molecular mechanism was validated by co-immunoprecipitation (Co-IP) and ubiquitination assays.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>CUL1 expression was enhanced in the Dex-induced osteoporosis mouse model. CUL1 silencing moderated the Dex-induced cell proliferation and osteogenesis inhibition. Moreover, CUL1 promoted the ubiquitination and degradation of ASAP1 via the SKP1-CUL1-F-box (SCF)-FBXW7 complex. CUL1 induced apoptosis and repressed osteogenesis by ASAP1. CUL1 silencing alleviated the Dex-induced osteoporosis in mice.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>CUL1 suppressed osteoblast proliferation and osteogenesis by promoting ASAP1 ubiquitination via the SCF-FBXW7 complex in glucocorticoid-induced osteoporosis.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":13017,"journal":{"name":"Hormones","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CUL1 exacerbates glucocorticoid-induced osteoporosis by enhancing ASAP1 ubiquitination\",\"authors\":\"Jun Wu, Weijian Ren, Jun Liu, Xizhuang Bai\",\"doi\":\"10.1007/s42000-024-00599-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background</h3><p>Glucocorticoid-induced osteoporosis is a leading secondary cause of osteoporosis. Cullin-1 (CUL1) levels are abnormally elevated in patients with osteoporosis, but the underlying mechanism remains unclear. The purpose of this study was to elucidate the mechanism of action of CUL1 in a glucocorticoid (dexamethasone, Dex)-induced osteoporosis model.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>C57BL/6J mice were intraperitoneally injected with Dex to establish an osteoporosis model. Mouse femur bone injury and bone formation were detected using hematoxylin-eosin or Masson staining. Apoptosis and cell cycle distribution were determined by flow cytometry. Alkaline phosphatase (ALP) activity and calcified nodules were monitored using ALP and Alizarin Red S staining. The molecular mechanism was validated by co-immunoprecipitation (Co-IP) and ubiquitination assays.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>CUL1 expression was enhanced in the Dex-induced osteoporosis mouse model. CUL1 silencing moderated the Dex-induced cell proliferation and osteogenesis inhibition. Moreover, CUL1 promoted the ubiquitination and degradation of ASAP1 via the SKP1-CUL1-F-box (SCF)-FBXW7 complex. CUL1 induced apoptosis and repressed osteogenesis by ASAP1. CUL1 silencing alleviated the Dex-induced osteoporosis in mice.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>CUL1 suppressed osteoblast proliferation and osteogenesis by promoting ASAP1 ubiquitination via the SCF-FBXW7 complex in glucocorticoid-induced osteoporosis.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":13017,\"journal\":{\"name\":\"Hormones\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42000-024-00599-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42000-024-00599-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
背景糖皮质激素诱导的骨质疏松症是骨质疏松症的主要继发性原因。骨质疏松症患者体内的库林-1(CUL1)水平异常升高,但其潜在机制仍不清楚。本研究旨在阐明 CUL1 在糖皮质激素(地塞米松,Dex)诱导的骨质疏松症模型中的作用机制。用苏木精-伊红或马森染色法检测小鼠股骨骨损伤和骨形成。流式细胞术测定细胞凋亡和细胞周期分布。使用碱性磷酸酶(ALP)和茜素红 S 染色法监测碱性磷酸酶(ALP)活性和钙化结节。共免疫共沉淀(Co-IP)和泛素化试验验证了其分子机制。结果CUL1在Dex诱导的骨质疏松症小鼠模型中表达增强,沉默CUL1可减轻Dex诱导的细胞增殖和成骨抑制。此外,CUL1通过SKP1-CUL1-F-box (SCF)-FBXW7 复合物促进了ASAP1的泛素化和降解。CUL1通过ASAP1诱导细胞凋亡并抑制成骨。结论在糖皮质激素诱导的骨质疏松症中,CUL1通过SCF-FBXW7复合物促进ASAP1泛素化,从而抑制成骨细胞增殖和成骨。
CUL1 exacerbates glucocorticoid-induced osteoporosis by enhancing ASAP1 ubiquitination
Background
Glucocorticoid-induced osteoporosis is a leading secondary cause of osteoporosis. Cullin-1 (CUL1) levels are abnormally elevated in patients with osteoporosis, but the underlying mechanism remains unclear. The purpose of this study was to elucidate the mechanism of action of CUL1 in a glucocorticoid (dexamethasone, Dex)-induced osteoporosis model.
Methods
C57BL/6J mice were intraperitoneally injected with Dex to establish an osteoporosis model. Mouse femur bone injury and bone formation were detected using hematoxylin-eosin or Masson staining. Apoptosis and cell cycle distribution were determined by flow cytometry. Alkaline phosphatase (ALP) activity and calcified nodules were monitored using ALP and Alizarin Red S staining. The molecular mechanism was validated by co-immunoprecipitation (Co-IP) and ubiquitination assays.
Results
CUL1 expression was enhanced in the Dex-induced osteoporosis mouse model. CUL1 silencing moderated the Dex-induced cell proliferation and osteogenesis inhibition. Moreover, CUL1 promoted the ubiquitination and degradation of ASAP1 via the SKP1-CUL1-F-box (SCF)-FBXW7 complex. CUL1 induced apoptosis and repressed osteogenesis by ASAP1. CUL1 silencing alleviated the Dex-induced osteoporosis in mice.
Conclusion
CUL1 suppressed osteoblast proliferation and osteogenesis by promoting ASAP1 ubiquitination via the SCF-FBXW7 complex in glucocorticoid-induced osteoporosis.