大麦基李代数和通用张量范畴的表征

IF 0.4 4区 数学 Q4 MATHEMATICS
Ivan Penkov, Valdemar Tsanov
{"title":"大麦基李代数和通用张量范畴的表征","authors":"Ivan Penkov, Valdemar Tsanov","doi":"10.1007/s12188-024-00280-6","DOIUrl":null,"url":null,"abstract":"<p>We extend previous work by constructing a universal abelian tensor category <span>\\(\\textbf{T}_t\\)</span> generated by two objects <i>X</i>, <i>Y</i> equipped with finite filtrations <span>\\(0\\subsetneq X_0\\subsetneq ...\\subsetneq X_{t+1}= X\\)</span> and <span>\\(0\\subsetneq Y_0\\subsetneq ... \\subsetneq Y_{t+1}= Y\\)</span>, and with a pairing <span>\\(X\\otimes Y\\rightarrow \\mathbbm {1}\\)</span>, where <span>\\(\\mathbbm {1}\\)</span> is the monoidal unit. This category is modeled as a category of representations of a Mackey Lie algebra <span>\\(\\mathfrak {gl}^M(V,V_*)\\)</span> of cardinality <span>\\(2^{\\aleph _t}\\)</span>, associated to a diagonalizable pairing between two vector spaces <span>\\(V,V_*\\)</span> of dimension <span>\\(\\aleph _t\\)</span> over an algebraically closed field <span>\\({{\\mathbb {K}}}\\)</span> of characteristic 0. As a preliminary step, we study a tensor category <span>\\({{\\mathbb {T}}}_t\\)</span> generated by the algebraic duals <span>\\(V^*\\)</span> and <span>\\((V_*)^*\\)</span>. The injective hull of the trivial module <span>\\({{\\mathbb {K}}}\\)</span> in <span>\\({{\\mathbb {T}}}_t\\)</span> is a commutative algebra <i>I</i>, and the category <span>\\(\\textbf{T}_t\\)</span> consists of all free <i>I</i>-modules in <span>\\({{\\mathbb {T}}}_t\\)</span>. An essential novelty in our work is the explicit computation of Ext-spaces between simples in both categories <span>\\(\\textbf{T}_t\\)</span> and <span>\\({{\\mathbb {T}}}_t\\)</span>, which had been an open problem already for <span>\\(t=0\\)</span>. This provides a direct link from the theory of universal tensor categories to Littlewood-Richardson-type combinatorics.</p>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representations of large Mackey Lie algebras and universal tensor categories\",\"authors\":\"Ivan Penkov, Valdemar Tsanov\",\"doi\":\"10.1007/s12188-024-00280-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend previous work by constructing a universal abelian tensor category <span>\\\\(\\\\textbf{T}_t\\\\)</span> generated by two objects <i>X</i>, <i>Y</i> equipped with finite filtrations <span>\\\\(0\\\\subsetneq X_0\\\\subsetneq ...\\\\subsetneq X_{t+1}= X\\\\)</span> and <span>\\\\(0\\\\subsetneq Y_0\\\\subsetneq ... \\\\subsetneq Y_{t+1}= Y\\\\)</span>, and with a pairing <span>\\\\(X\\\\otimes Y\\\\rightarrow \\\\mathbbm {1}\\\\)</span>, where <span>\\\\(\\\\mathbbm {1}\\\\)</span> is the monoidal unit. This category is modeled as a category of representations of a Mackey Lie algebra <span>\\\\(\\\\mathfrak {gl}^M(V,V_*)\\\\)</span> of cardinality <span>\\\\(2^{\\\\aleph _t}\\\\)</span>, associated to a diagonalizable pairing between two vector spaces <span>\\\\(V,V_*\\\\)</span> of dimension <span>\\\\(\\\\aleph _t\\\\)</span> over an algebraically closed field <span>\\\\({{\\\\mathbb {K}}}\\\\)</span> of characteristic 0. As a preliminary step, we study a tensor category <span>\\\\({{\\\\mathbb {T}}}_t\\\\)</span> generated by the algebraic duals <span>\\\\(V^*\\\\)</span> and <span>\\\\((V_*)^*\\\\)</span>. The injective hull of the trivial module <span>\\\\({{\\\\mathbb {K}}}\\\\)</span> in <span>\\\\({{\\\\mathbb {T}}}_t\\\\)</span> is a commutative algebra <i>I</i>, and the category <span>\\\\(\\\\textbf{T}_t\\\\)</span> consists of all free <i>I</i>-modules in <span>\\\\({{\\\\mathbb {T}}}_t\\\\)</span>. An essential novelty in our work is the explicit computation of Ext-spaces between simples in both categories <span>\\\\(\\\\textbf{T}_t\\\\)</span> and <span>\\\\({{\\\\mathbb {T}}}_t\\\\)</span>, which had been an open problem already for <span>\\\\(t=0\\\\)</span>. This provides a direct link from the theory of universal tensor categories to Littlewood-Richardson-type combinatorics.</p>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12188-024-00280-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12188-024-00280-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们扩展了之前的工作,构建了一个由两个对象 X、Y 生成的通用长方体张量类别(\textbf{T}_t\),这两个对象都配备了有限滤波(0\subsetneq X_0\subsetneq ...\和 \(0\subsetneq Y_0\subsetneq ... \subsetneq Y_{t+1}= Y\), 以及配对 \(X\otimes Y\rightarrow \mathbbm {1}/),其中 \(\mathbbm {1}/)是单义单元。这个范畴被建模为心数为 2^{aleph _t}/)的麦基李代数(Mackey Lie algebra \(\mathfrak {gl}^M(V,V_*)\) 的表示范畴,与特征为 0 的代数闭域 \({\mathbb {K}}\) 上维度为 \(\aleph _t/)的两个向量空间 \(V,V_*\) 之间的可对角配对相关联。作为第一步,我们研究由代数对偶 \(V^*\) 和 \((V_*)^*\) 生成的张量范畴 \({{mathbb {T}}}_t\) 。在 \({{\mathbb {T}}}_t\) 中,三元模块 \({{\mathbb {K}}} 的注入全域是交换代数 I,而范畴 \(\textbf{T}}_t\) 包含了 \({{\mathbb {T}}}_t\) 中所有的自由 I 模块。我们工作中的一个重要新发现是明确地计算了两个范畴 \(\textbf{T}_t\) 和 \({{\mathbb {T}}}_t\) 中的单子之间的扩展空间,而这对于 \(t=0\) 来说已经是一个开放的问题了。这提供了一个从普遍张量范畴理论到利特尔伍德-理查森型组合学的直接联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representations of large Mackey Lie algebras and universal tensor categories

We extend previous work by constructing a universal abelian tensor category \(\textbf{T}_t\) generated by two objects XY equipped with finite filtrations \(0\subsetneq X_0\subsetneq ...\subsetneq X_{t+1}= X\) and \(0\subsetneq Y_0\subsetneq ... \subsetneq Y_{t+1}= Y\), and with a pairing \(X\otimes Y\rightarrow \mathbbm {1}\), where \(\mathbbm {1}\) is the monoidal unit. This category is modeled as a category of representations of a Mackey Lie algebra \(\mathfrak {gl}^M(V,V_*)\) of cardinality \(2^{\aleph _t}\), associated to a diagonalizable pairing between two vector spaces \(V,V_*\) of dimension \(\aleph _t\) over an algebraically closed field \({{\mathbb {K}}}\) of characteristic 0. As a preliminary step, we study a tensor category \({{\mathbb {T}}}_t\) generated by the algebraic duals \(V^*\) and \((V_*)^*\). The injective hull of the trivial module \({{\mathbb {K}}}\) in \({{\mathbb {T}}}_t\) is a commutative algebra I, and the category \(\textbf{T}_t\) consists of all free I-modules in \({{\mathbb {T}}}_t\). An essential novelty in our work is the explicit computation of Ext-spaces between simples in both categories \(\textbf{T}_t\) and \({{\mathbb {T}}}_t\), which had been an open problem already for \(t=0\). This provides a direct link from the theory of universal tensor categories to Littlewood-Richardson-type combinatorics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信