蒙特卡洛计算得出的 EBT3 和 EBT4 薄膜对 5-200 MeV 电子和 100 keV-15 MeV 光子的吸收剂量能量依赖关系

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Nathan Clements, Magdalena Bazalova-Carter
{"title":"蒙特卡洛计算得出的 EBT3 和 EBT4 薄膜对 5-200 MeV 电子和 100 keV-15 MeV 光子的吸收剂量能量依赖关系","authors":"Nathan Clements,&nbsp;Magdalena Bazalova-Carter","doi":"10.1002/acm2.14529","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Purpose</h3>\n \n <p>To use Monte Carlo simulations to study the absorbed-dose energy dependence of GAFChromic EBT3 and EBT4 films for 5–200 MeV electron beams and 100 keV–15 MeV photon beams considering two film compositions: a previous EBT3 composition (Bekerat et al.) and the final composition of EBT3/current composition of EBT4 (Palmer et al.).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A water phantom was simulated with films at 5–50 mm depth in 5 mm intervals. The water phantom was irradiated with flat, monoenergetic 5–200 MeV electron beams and 100 and 150 keV kilovoltage and 1–15 MeV megavoltage photon beams and the dose to the active layer of the films was scored. Simulations were rerun with the films defined as water to compare the absorbed-dose response of film to water, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>f</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mfrac>\n <msub>\n <mi>D</mi>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <msub>\n <mi>D</mi>\n <mrow>\n <mi>w</mi>\n <mi>a</mi>\n <mi>t</mi>\n <mi>e</mi>\n <mi>r</mi>\n </mrow>\n </msub>\n </mfrac>\n </mrow>\n <annotation>$f^{-1}(Q)=\\frac{D_{film}}{D_{water}}$</annotation>\n </semantics></math>.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>For electrons, the Bekerat et al. composition had variations in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>f</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f^{-1}(Q)$</annotation>\n </semantics></math> of up to <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1.9</mn>\n <mspace></mspace>\n <mo>±</mo>\n <mspace></mspace>\n <mn>0.1</mn>\n <mo>)</mo>\n <mo>%</mo>\n </mrow>\n <annotation>$(1.9\\,\\pm \\,0.1)\\%$</annotation>\n </semantics></math> from 5 to 200 MeV. Similarly, the Palmer et al. composition had differences in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>f</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f^{-1}(Q)$</annotation>\n </semantics></math> up to <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>2.5</mn>\n <mo>±</mo>\n <mn>0.2</mn>\n <mo>)</mo>\n <mo>%</mo>\n </mrow>\n <annotation>$(2.5 \\pm 0.2)\\%$</annotation>\n </semantics></math> from 5 to 200 MeV. For photons, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>f</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f^{-1}(Q)$</annotation>\n </semantics></math> varied up to <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>2.4</mn>\n <mo>±</mo>\n <mn>0.3</mn>\n <mo>)</mo>\n <mo>%</mo>\n </mrow>\n <annotation>$(2.4 \\pm 0.3)\\%$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>4.5</mn>\n <mo>±</mo>\n <mn>0.7</mn>\n <mo>)</mo>\n <mo>%</mo>\n </mrow>\n <annotation>$(4.5 \\pm 0.7)\\%$</annotation>\n </semantics></math> from 100 keV to 15 MeV for the Bekerat et al. and Palmer et al. compositions, respectively. The depth of films did not appear to significantly affect <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>f</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f^{-1}(Q)$</annotation>\n </semantics></math> for photons at any energy and for electrons at energies <span></span><math>\n <semantics>\n <mo>&gt;</mo>\n <annotation>$&gt;$</annotation>\n </semantics></math> 50 MeV. However, for 5 and 10 MeV electrons, decreases of up to <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>10.2</mn>\n <mo>±</mo>\n <mn>1.1</mn>\n <mo>)</mo>\n <mo>%</mo>\n </mrow>\n <annotation>$(10.2 \\pm 1.1)\\%$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>f</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f^{-1}(Q)$</annotation>\n </semantics></math> were seen due to stacked films and increased beam attenuation in films compared to water.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The up to <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>2.5</mn>\n <mo>±</mo>\n <mn>0.2</mn>\n <mo>)</mo>\n <mo>%</mo>\n </mrow>\n <annotation>$(2.5 \\pm 0.2)\\%$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>4.5</mn>\n <mo>±</mo>\n <mn>0.7</mn>\n <mo>)</mo>\n <mo>%</mo>\n </mrow>\n <annotation>$(4.5 \\pm 0.7)\\%$</annotation>\n </semantics></math> variations in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>f</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f^{-1}(Q)$</annotation>\n </semantics></math> for electrons and photons, respectively, across the energies considered in this study indicate the importance of calibrating films with the energy intended for measurement. Additionally, this work emphasizes potential issues with stacking films to measure depth dose curves, particularly for electron beams with energies <span></span><math>\n <semantics>\n <mo>≤</mo>\n <annotation>$\\le$</annotation>\n </semantics></math>10 MeV.</p>\n </section>\n </div>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":"25 12","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.14529","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo calculated absorbed-dose energy dependence of EBT3 and EBT4 films for 5–200 MeV electrons and 100 keV–15 MeV photons\",\"authors\":\"Nathan Clements,&nbsp;Magdalena Bazalova-Carter\",\"doi\":\"10.1002/acm2.14529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>To use Monte Carlo simulations to study the absorbed-dose energy dependence of GAFChromic EBT3 and EBT4 films for 5–200 MeV electron beams and 100 keV–15 MeV photon beams considering two film compositions: a previous EBT3 composition (Bekerat et al.) and the final composition of EBT3/current composition of EBT4 (Palmer et al.).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>A water phantom was simulated with films at 5–50 mm depth in 5 mm intervals. The water phantom was irradiated with flat, monoenergetic 5–200 MeV electron beams and 100 and 150 keV kilovoltage and 1–15 MeV megavoltage photon beams and the dose to the active layer of the films was scored. Simulations were rerun with the films defined as water to compare the absorbed-dose response of film to water, <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>f</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mfrac>\\n <msub>\\n <mi>D</mi>\\n <mrow>\\n <mi>f</mi>\\n <mi>i</mi>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <msub>\\n <mi>D</mi>\\n <mrow>\\n <mi>w</mi>\\n <mi>a</mi>\\n <mi>t</mi>\\n <mi>e</mi>\\n <mi>r</mi>\\n </mrow>\\n </msub>\\n </mfrac>\\n </mrow>\\n <annotation>$f^{-1}(Q)=\\\\frac{D_{film}}{D_{water}}$</annotation>\\n </semantics></math>.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>For electrons, the Bekerat et al. composition had variations in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>f</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$f^{-1}(Q)$</annotation>\\n </semantics></math> of up to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>1.9</mn>\\n <mspace></mspace>\\n <mo>±</mo>\\n <mspace></mspace>\\n <mn>0.1</mn>\\n <mo>)</mo>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$(1.9\\\\,\\\\pm \\\\,0.1)\\\\%$</annotation>\\n </semantics></math> from 5 to 200 MeV. Similarly, the Palmer et al. composition had differences in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>f</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$f^{-1}(Q)$</annotation>\\n </semantics></math> up to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>2.5</mn>\\n <mo>±</mo>\\n <mn>0.2</mn>\\n <mo>)</mo>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$(2.5 \\\\pm 0.2)\\\\%$</annotation>\\n </semantics></math> from 5 to 200 MeV. For photons, <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>f</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$f^{-1}(Q)$</annotation>\\n </semantics></math> varied up to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>2.4</mn>\\n <mo>±</mo>\\n <mn>0.3</mn>\\n <mo>)</mo>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$(2.4 \\\\pm 0.3)\\\\%$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>4.5</mn>\\n <mo>±</mo>\\n <mn>0.7</mn>\\n <mo>)</mo>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$(4.5 \\\\pm 0.7)\\\\%$</annotation>\\n </semantics></math> from 100 keV to 15 MeV for the Bekerat et al. and Palmer et al. compositions, respectively. The depth of films did not appear to significantly affect <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>f</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$f^{-1}(Q)$</annotation>\\n </semantics></math> for photons at any energy and for electrons at energies <span></span><math>\\n <semantics>\\n <mo>&gt;</mo>\\n <annotation>$&gt;$</annotation>\\n </semantics></math> 50 MeV. However, for 5 and 10 MeV electrons, decreases of up to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>10.2</mn>\\n <mo>±</mo>\\n <mn>1.1</mn>\\n <mo>)</mo>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$(10.2 \\\\pm 1.1)\\\\%$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>f</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$f^{-1}(Q)$</annotation>\\n </semantics></math> were seen due to stacked films and increased beam attenuation in films compared to water.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The up to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>2.5</mn>\\n <mo>±</mo>\\n <mn>0.2</mn>\\n <mo>)</mo>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$(2.5 \\\\pm 0.2)\\\\%$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>4.5</mn>\\n <mo>±</mo>\\n <mn>0.7</mn>\\n <mo>)</mo>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$(4.5 \\\\pm 0.7)\\\\%$</annotation>\\n </semantics></math> variations in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>f</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$f^{-1}(Q)$</annotation>\\n </semantics></math> for electrons and photons, respectively, across the energies considered in this study indicate the importance of calibrating films with the energy intended for measurement. Additionally, this work emphasizes potential issues with stacking films to measure depth dose curves, particularly for electron beams with energies <span></span><math>\\n <semantics>\\n <mo>≤</mo>\\n <annotation>$\\\\le$</annotation>\\n </semantics></math>10 MeV.</p>\\n </section>\\n </div>\",\"PeriodicalId\":14989,\"journal\":{\"name\":\"Journal of Applied Clinical Medical Physics\",\"volume\":\"25 12\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.14529\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Clinical Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acm2.14529\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acm2.14529","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的使用蒙特卡洛模拟法研究GAFChromic EBT3和EBT4薄膜在5-200MeV电子束和100keV-15MeV光子束下的吸收剂量能量依赖性,同时考虑两种薄膜成分:以前的EBT3成分(Bekerat等人)和EBT3的最终成分/EBT4的当前成分(Palmer等人)。用平直、单能的 5-200 MeV 电子束以及 100 和 150 keV 千伏电压和 1-15 MeV 兆伏电压光子束照射水模型,并对薄膜活性层的剂量进行评分。在将薄膜定义为水的情况下重新进行了模拟,以比较薄膜对水的吸收剂量反应。同样,Palmer 等人的成分差异也高达 5 到 200 MeV。在光子方面,Bekerat 等人和 Palmer 等人的成分分别从 100 keV 到 15 MeV 不等。对于任何能量的光子和能量为 50 MeV 的电子,薄膜的深度似乎都没有显著影响。然而,对于 5 MeV 和 10 MeV 的电子,由于薄膜的堆叠以及与水相比薄膜中光束衰减的增加,电子和光子在薄膜中的衰减可达 in。此外,这项研究还强调了堆叠薄膜测量深度剂量曲线的潜在问题,特别是对于能量为 10 MeV 的电子束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monte Carlo calculated absorbed-dose energy dependence of EBT3 and EBT4 films for 5–200 MeV electrons and 100 keV–15 MeV photons

Monte Carlo calculated absorbed-dose energy dependence of EBT3 and EBT4 films for 5–200 MeV electrons and 100 keV–15 MeV photons

Purpose

To use Monte Carlo simulations to study the absorbed-dose energy dependence of GAFChromic EBT3 and EBT4 films for 5–200 MeV electron beams and 100 keV–15 MeV photon beams considering two film compositions: a previous EBT3 composition (Bekerat et al.) and the final composition of EBT3/current composition of EBT4 (Palmer et al.).

Methods

A water phantom was simulated with films at 5–50 mm depth in 5 mm intervals. The water phantom was irradiated with flat, monoenergetic 5–200 MeV electron beams and 100 and 150 keV kilovoltage and 1–15 MeV megavoltage photon beams and the dose to the active layer of the films was scored. Simulations were rerun with the films defined as water to compare the absorbed-dose response of film to water, f 1 ( Q ) = D f i l m D w a t e r $f^{-1}(Q)=\frac{D_{film}}{D_{water}}$ .

Results

For electrons, the Bekerat et al. composition had variations in f 1 ( Q ) $f^{-1}(Q)$ of up to ( 1.9 ± 0.1 ) % $(1.9\,\pm \,0.1)\%$ from 5 to 200 MeV. Similarly, the Palmer et al. composition had differences in f 1 ( Q ) $f^{-1}(Q)$ up to ( 2.5 ± 0.2 ) % $(2.5 \pm 0.2)\%$ from 5 to 200 MeV. For photons, f 1 ( Q ) $f^{-1}(Q)$ varied up to ( 2.4 ± 0.3 ) % $(2.4 \pm 0.3)\%$ and ( 4.5 ± 0.7 ) % $(4.5 \pm 0.7)\%$ from 100 keV to 15 MeV for the Bekerat et al. and Palmer et al. compositions, respectively. The depth of films did not appear to significantly affect f 1 ( Q ) $f^{-1}(Q)$ for photons at any energy and for electrons at energies > $>$  50 MeV. However, for 5 and 10 MeV electrons, decreases of up to ( 10.2 ± 1.1 ) % $(10.2 \pm 1.1)\%$ in f 1 ( Q ) $f^{-1}(Q)$ were seen due to stacked films and increased beam attenuation in films compared to water.

Conclusions

The up to ( 2.5 ± 0.2 ) % $(2.5 \pm 0.2)\%$ and ( 4.5 ± 0.7 ) % $(4.5 \pm 0.7)\%$ variations in f 1 ( Q ) $f^{-1}(Q)$ for electrons and photons, respectively, across the energies considered in this study indicate the importance of calibrating films with the energy intended for measurement. Additionally, this work emphasizes potential issues with stacking films to measure depth dose curves, particularly for electron beams with energies $\le$ 10 MeV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
19.00%
发文量
331
审稿时长
3 months
期刊介绍: Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission. JACMP will publish: -Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500. -Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed. -Technical Notes: These should be no longer than 3000 words, including key references. -Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents. -Book Reviews: The editorial office solicits Book Reviews. -Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics. -Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信