{"title":"正封闭参数模型","authors":"Kristóf Kanalas","doi":"arxiv-2409.11231","DOIUrl":null,"url":null,"abstract":"We study positively closed and strongly positively closed $\\mathcal{C}\\to\nSh(B)$ models, where $\\mathcal{C}$ is a $(\\kappa ,\\kappa )$-coherent category\nand $B$ is a $(\\kappa ,\\kappa )$-coherent Boolean-algebra for some weakly\ncompact $\\kappa $. We prove that if $\\mathcal{C}$ is coherent and $X$ is a\nStone-space then positively closed, not strongly positively closed\n$\\mathcal{C}\\to Sh(X)$ models may exist.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positively closed parametrized models\",\"authors\":\"Kristóf Kanalas\",\"doi\":\"arxiv-2409.11231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study positively closed and strongly positively closed $\\\\mathcal{C}\\\\to\\nSh(B)$ models, where $\\\\mathcal{C}$ is a $(\\\\kappa ,\\\\kappa )$-coherent category\\nand $B$ is a $(\\\\kappa ,\\\\kappa )$-coherent Boolean-algebra for some weakly\\ncompact $\\\\kappa $. We prove that if $\\\\mathcal{C}$ is coherent and $X$ is a\\nStone-space then positively closed, not strongly positively closed\\n$\\\\mathcal{C}\\\\to Sh(X)$ models may exist.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study positively closed and strongly positively closed $\mathcal{C}\to
Sh(B)$ models, where $\mathcal{C}$ is a $(\kappa ,\kappa )$-coherent category
and $B$ is a $(\kappa ,\kappa )$-coherent Boolean-algebra for some weakly
compact $\kappa $. We prove that if $\mathcal{C}$ is coherent and $X$ is a
Stone-space then positively closed, not strongly positively closed
$\mathcal{C}\to Sh(X)$ models may exist.